

Customer Function Modules

SCENARIO VERSION

SETTINGS VARIANT

COMMENT VARIANT

RESPONSIBLE PERSON

CREATION DATE

1.0

IT STANDARD DOCUMENTATION

ALEXANDER DÜRRSTEIN

11.08.2020

 Performer Suite Seite 2 von 77

Table of contents

1 Docu Performer General Settings ... 3
2 Function Module Z_RFC_ADSO_CREATE_XML - Anlegen eines ADSOs .. 3

2.1 General Information ... 3
2.2 Import Parameter... 3
2.3 Exceptions .. 3
2.4 Source code Function module .. 4

3 Function Module Z_RFC_ADSO_GETDTL_XML - Z_RFC_ADSO_GETDTL_XML 6
3.1 General Information ... 6
3.2 Import Parameter... 6
3.3 Export Parameter .. 6
3.4 Exceptions .. 6
3.5 Source code Function module .. 6

4 Function Module Z_RFC_AUTH_CHECK - Check Authority RFC ... 8
4.1 General Information ... 8
4.2 Import Parameter... 8
4.3 Tables ... 8
4.4 Exceptions .. 9
4.5 Source code Function module .. 9

5 Function Module Z_RFC_CHECK_ACT_TR - Test RFC ..10
5.1 General Information ... 10
5.2 Import Parameter... 10
5.3 Export Parameter .. 10
5.4 Exceptions .. 10
5.5 Source code Function module .. 10

6 Function Module Z_RFC_CODESCAN - ABAP source scan (RFC) ..16
6.1 General Information ... 16
6.2 Import Parameter... 16
6.3 Tables ... 16
6.4 Exceptions .. 16
6.5 Source code Function module .. 16
6.6 Includes .. 43

7 Function Module Z_RFC_ENTITY_SYNC - RFC-Synchronisation of Entities ..43
7.1 General Information ... 43
7.2 Import Parameter... 44
7.3 Tables ... 44
7.4 Exceptions .. 45
7.5 Source code Function module .. 45

8 Function Module Z_RFC_FUNCTION_DELETE - Delete Function Module (for Updating FMs)56
8.1 General Information ... 56
8.2 Import Parameter... 56
8.3 Exceptions .. 57
8.4 Source code Function module .. 57

9 Function Module Z_RFC_GET_DTP_DETAILS - Read DTP filter via RFC ..57
9.1 General Information ... 57
9.2 Import Parameter... 57
9.3 Export Parameter .. 57
9.4 Tables ... 57
9.5 Exceptions .. 58
9.6 Source code Function module .. 58

10 Function Module Z_RFC_GET_STRING - Read STRING fields ..59
10.1 General Information ... 59
10.2 Import Parameter... 59
10.3 Export Parameter .. 59
10.4 Tables ... 59
10.5 Exceptions .. 60
10.6 Source code Function module .. 60

11 Function Module Z_RFC_HCPR_CREATE - Creation of HCPRs ..63
11.1 General Information ... 63
11.2 Import Parameter... 63
11.3 Export Parameter .. 63
11.4 Tables ... 63
11.5 Exceptions .. 63
11.6 Source code Function module .. 63

12 Function Module Z_RFC_READ_REPORT - Read ABAP-Reports via RFC ..64
12.1 General Information ... 64
12.2 Import Parameter... 64
12.3 Export Parameter .. 64

 Performer Suite Seite 3 von 77

12.4 Tables ... 64
12.5 Exceptions .. 64
12.6 Source code Function module .. 64

13 Function Module Z_RFC_TRANSLATION - Translation Steward ...65
13.1 General Information ... 65
13.2 Import Parameter... 65
13.3 Tables ... 65
13.4 Exceptions .. 65
13.5 Source code Function module .. 65

14 Function Module Z_RFC_USAGE_ANALYSIS - Where used analysis for BI Docu Performer...............66
14.1 General Information ... 66
14.2 Import Parameter... 67
14.3 Tables ... 67
14.4 Exceptions .. 67
14.5 Source code Function module .. 67

1 Docu Performer General Settings

Performer Suite Settings

Settings Variant IT standard documentation

Comment Variant

Word Template Performer_Suite_Scenario_Template_EN.dotx

2 Function Module Z_RFC_ADSO_CREATE_XML - Anlegen eines ADSOs

2.1 General Information

System BI2

Function Module Z_RFC_ADSO_CREATE_XML, Anlegen eines ADSOs

Function Pool Z_DP

Remote Yes

Last changed by NMEYER

Last change (timestamp) 11/06/2018

Timestamp of documentation 11/08/2020 16:29:22

2.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_ADSONM TYPE RSOADSONM X Datastore Object: Name

I_TEXT TYPE RSOADSODESCR X X Datastore Objects: Description

I_INFOAREA TYPE RSINFOAREA X X InfoArea

IV_ADSOFLAGS TYPE STRING X Datastore Object Flags

IV_OBJECT TYPE STRING X

IV_DIMENSION TYPE STRING X

IV_KEY TYPE STRING X

IV_HASH TYPE STRING X

IV_INDEX TYPE STRING X

IV_PARTITION TYPE STRING X

IV_CHA_CONST TYPE STRING X

IV_VALIDITY TYPE STRING X

2.3 Exceptions

Exception Short text

NOT_ACTIVE konnte nicht in aktiver Version angelegt werden

 Performer Suite Seite 4 von 77

NOT_CREATED konnte nicht angelegt werden

RELEASE_1_2

2.4 Source code Function module

FUNCTION Z_RFC_ADSO_CREATE_XML.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(I_ADSONM) TYPE RSOADSONM
*" VALUE(I_TEXT) TYPE RSOADSODESCR OPTIONAL
*" VALUE(I_INFOAREA) TYPE RSINFOAREA OPTIONAL
*" VALUE(IV_ADSOFLAGS) TYPE STRING
*" VALUE(IV_OBJECT) TYPE STRING
*" VALUE(IV_DIMENSION) TYPE STRING
*" VALUE(IV_KEY) TYPE STRING
*" VALUE(IV_HASH) TYPE STRING
*" VALUE(IV_INDEX) TYPE STRING
*" VALUE(IV_PARTITION) TYPE STRING
*" VALUE(IV_CHA_CONST) TYPE STRING
*" VALUE(IV_VALIDITY) TYPE STRING
*" EXCEPTIONS
*" NOT_ACTIVE
*" NOT_CREATED
*" RELEASE_1_2
*"--
 DATA: lt_resbind TYPE abap_trans_resbind_tab.
 DATA: ls_resbind TYPE abap_trans_resbind.
 DATA: lt_parameters TYPE abap_parmbind_tab.
 DATA: ls_parameter TYPE abap_parmbind.
 DATA: lo_ref TYPE REF TO data.

 FIELD-SYMBOLS: <any> TYPE any.

 " get method parameter types
 SELECT
 sconame,
 type
 FROM seosubcodf
 INTO TABLE @DATA(lt_method_param_types)
 WHERE clsname = 'CL_RSO_ADSO_API'
 AND cmpname = 'CREATE'
 AND type <> ''
 ORDER BY editorder.

 LOOP AT lt_method_param_types ASSIGNING FIELD-SYMBOL(<ls_method_param_type>).
 FREE: ls_parameter, ls_resbind, lt_resbind.

 TRY. " create data reference for parameter
 CREATE DATA lo_ref TYPE (<ls_method_param_type>-type).
 CATCH cx_sy_create_data_error.
 " probably type of class
 DATA(lv_type) = |CL_RSO_ADSO_API=>{ <ls_method_param_type>-type }|.
 TRY.
 CREATE DATA lo_ref TYPE (lv_type).
 CATCH cx_sy_create_data_error..
 " no plan c
 EXIT.
 ENDTRY.
 ENDTRY.

 ls_resbind = VALUE abap_trans_resbind(
 name = <ls_method_param_type>-sconame
 value = lo_ref).
 INSERT ls_resbind INTO TABLE lt_resbind.

 " determine kind of parameter for dynamic method call
 CASE <ls_method_param_type>-sconame+0(1).
 WHEN 'E'.
 DATA(lv_kind) = cl_abap_objectdescr=>importing.
 WHEN 'I'.
 lv_kind = cl_abap_objectdescr=>exporting.
 WHEN OTHERS.
 EXIT.
 ENDCASE.

 CASE <ls_method_param_type>-sconame.

 Performer Suite Seite 5 von 77

 WHEN 'I_ADSONM'.
 GET REFERENCE OF i_adsonm INTO DATA(lo_adsonmref).
 ls_parameter = VALUE abap_parmbind(
 name = <ls_method_param_type>-sconame
 kind = lv_kind
 value = lo_adsonmref).
 INSERT ls_parameter INTO TABLE lt_parameters.
 WHEN 'I_TEXT'.
 GET REFERENCE OF i_text INTO DATA(lo_text).
 ls_parameter = VALUE abap_parmbind(
 name = <ls_method_param_type>-sconame
 kind = lv_kind
 value = lo_text).
 INSERT ls_parameter INTO TABLE lt_parameters.
 CONTINUE.
 WHEN 'I_INFOAREA'.
 GET REFERENCE OF i_infoarea INTO DATA(lo_infoarea).
 ls_parameter = VALUE abap_parmbind(
 name = <ls_method_param_type>-sconame
 kind = lv_kind
 value = lo_infoarea).
 INSERT ls_parameter INTO TABLE lt_parameters.
 CONTINUE.
 WHEN 'I_S_ADSOFLAGS'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_adsoflags RESULT (lt_resbind).
 WHEN 'I_T_OBJECT'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_object RESULT (lt_resbind).
 WHEN 'I_T_DIMENSION'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_dimension RESULT (lt_resbind).
 WHEN 'I_T_KEY'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_key RESULT (lt_resbind).
 WHEN 'I_T_HASH'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_hash RESULT (lt_resbind).
 WHEN 'I_T_INDEX'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_index RESULT (lt_resbind).
 WHEN 'I_T_PARTITION'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_partition RESULT (lt_resbind).
 WHEN 'I_T_CHA_CONST'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_cha_const RESULT (lt_resbind).
 WHEN 'I_T_VALIDITY'.
 CALL TRANSFORMATION (`ID`) SOURCE XML iv_validity RESULT (lt_resbind).
 ENDCASE.

 " build parameter table for method call
 ls_parameter = VALUE abap_parmbind(
 name = <ls_method_param_type>-sconame
 kind = lv_kind
 value = lt_resbind[1]-value).
 INSERT ls_parameter INTO TABLE lt_parameters.

 ENDLOOP.

 TRY.
 CALL METHOD ('CL_RSO_ADSO_API')=>create PARAMETER-TABLE lt_parameters.
 CATCH cx_root. " catch all errors and exit
 ENDTRY.

 "check if object is created, active and dequeue it
 DATA: lv_exists TYPE i.
 SELECT COUNT(*)
 FROM rsoadso
 INTO lv_exists
 WHERE adsonm = i_adsonm
 AND (objvers = 'A'
 OR objvers = 'M').

 IF NOT lv_exists >= 1.
 RAISE not_created.
 ENDIF.

 DATA: lo_adso TYPE REF TO cl_rso_adso.

 CALL METHOD cl_rso_adso=>factory
 EXPORTING
 i_adsonm = i_adsonm
 RECEIVING
 r_r_adso = lo_adso.

 Performer Suite Seite 6 von 77

 "dequeue
 CALL METHOD lo_adso->if_rso_tlogo_maintain~dequeue.

 "is active
 DATA: is_active TYPE rs_bool.

 CALL METHOD lo_adso->if_rso_tlogo_maintain~is_active
 RECEIVING
 r_is_active = is_active.

 IF is_active = rs_c_false.
 RAISE not_active.
 ENDIF.
 ENDFUNCTION.

3 Function Module Z_RFC_ADSO_GETDTL_XML - Z_RFC_ADSO_GETDTL_XML

3.1 General Information

System BI2

Function Module Z_RFC_ADSO_GETDTL_XML, Z_RFC_ADSO_GETDTL_XML

Function Pool Z_DP

Remote Yes

Last changed by TSCHMIDT

Last change (timestamp) 01/08/2017

Timestamp of documentation 11/08/2020 16:29:26

3.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_ADSONM TYPE RSOADSONM X

3.3 Export Parameter

Parameter Associated Type Pass Short text

E_TEXT TYPE RSOADSODESCR X

E_INFOAREA TYPE RSINFOAREA X

EV_ADSOFLAGS_XM
L

TYPE STRING X

EV_OBJECT_XML TYPE STRING X

EV_DIMENSION_XM
L

TYPE STRING X

EV_KEY_XML TYPE STRING X

EV_HASH_XML TYPE STRING X

EV_INDEX_XML TYPE STRING X

EV_PARTITION_XML TYPE STRING X

EV_CHA_CONST_X
ML

TYPE STRING X

EV_VALIDITY_XML TYPE STRING X

3.4 Exceptions

Exception Short text

RELEASE_1_0

3.5 Source code Function module

FUNCTION Z_RFC_ADSO_GETDTL_XML.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(I_ADSONM) TYPE RSOADSONM
*" EXPORTING

 Performer Suite Seite 7 von 77

*" VALUE(E_TEXT) TYPE RSOADSODESCR
*" VALUE(E_INFOAREA) TYPE RSINFOAREA
*" VALUE(EV_ADSOFLAGS_XML) TYPE STRING
*" VALUE(EV_OBJECT_XML) TYPE STRING
*" VALUE(EV_DIMENSION_XML) TYPE STRING
*" VALUE(EV_KEY_XML) TYPE STRING
*" VALUE(EV_HASH_XML) TYPE STRING
*" VALUE(EV_INDEX_XML) TYPE STRING
*" VALUE(EV_PARTITION_XML) TYPE STRING
*" VALUE(EV_CHA_CONST_XML) TYPE STRING
*" VALUE(EV_VALIDITY_XML) TYPE STRING
*" EXCEPTIONS
*" RELEASE_1_0
*"--
 DATA: lt_parameters TYPE abap_parmbind_tab.
 DATA: ls_parameter TYPE abap_parmbind.
 DATA: lo_ref TYPE REF TO data.

 FIELD-SYMBOLS: <any> TYPE any.

 " get method parameter types
 SELECT
 sconame,
 type
 FROM seosubcodf
 INTO TABLE @DATA(lt_method_param_types)
 WHERE clsname = 'CL_RSO_ADSO_API'
 AND cmpname = 'READ'
 AND type <> ''
 ORDER BY editorder.

 LOOP AT lt_method_param_types ASSIGNING FIELD-SYMBOL(<ls_method_param_type>).
 TRY .
 CREATE DATA lo_ref TYPE (<ls_method_param_type>-type).
 CATCH cx_sy_create_data_error.
 " probably type of class
 DATA(lv_type) = |CL_RSO_ADSO_API=>{ <ls_method_param_type>-type }|.
 TRY.
 CREATE DATA lo_ref TYPE (lv_type).
 CATCH cx_sy_create_data_error..
 " no plan c
 EXIT.
 ENDTRY.
 ENDTRY.

 CASE <ls_method_param_type>-sconame+0(1).
 WHEN 'E'.
 DATA(lv_kind) = cl_abap_objectdescr=>importing.
 WHEN 'I'.
 lv_kind = cl_abap_objectdescr=>exporting.
 WHEN OTHERS.
 EXIT.
 ENDCASE.

 ls_parameter = VALUE abap_parmbind(
 name = <ls_method_param_type>-sconame
 kind = lv_kind
 value = lo_ref).
 INSERT ls_parameter INTO TABLE lt_parameters.
 FREE: ls_parameter.

 ENDLOOP.

 READ TABLE lt_parameters ASSIGNING FIELD-SYMBOL(<ls_parameter>) WITH KEY name = 'I_ADSONM'.
 IF sy-subrc = 0.
 ASSIGN <ls_parameter>-value->* TO <any>.
 <any> = i_adsonm.
 ENDIF.

 TRY.
 CALL METHOD ('CL_RSO_ADSO_API')=>read PARAMETER-TABLE lt_parameters.
 CATCH cx_root. " catch all errors and exit -> no exceptions defined
 EXIT.
 ENDTRY.

 " Transform to XML for Export
 LOOP AT lt_parameters ASSIGNING <ls_parameter>.

 Performer Suite Seite 8 von 77

 ASSIGN <ls_parameter>-value->* TO <any>.
 " For easier consumption in the create Module switch the naming in XML to I_
 " for the importing Parameters of the create method
 IF <ls_parameter>-name+0(1) = 'E'.
 DATA(lv_name) = |I{ <ls_parameter>-name+1(29) }|.
 ELSE.
 lv_name = <ls_parameter>-name.
 ENDIF.

 DATA(lt_srcbind) = VALUE abap_trans_srcbind_tab((
 name = lv_name
 value = <ls_parameter>-value)).

 CASE <ls_parameter>-name.
 WHEN 'E_TEXT'.
 e_text = <any>.
 WHEN 'E_INFOAREA'.
 e_infoarea = <any>..
 WHEN 'E_S_ADSOFLAGS'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_adsoflags_xml.
 WHEN 'E_T_OBJECT'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_object_xml.
 WHEN 'E_T_DIMENSION'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_dimension_xml.
 WHEN 'E_T_KEY'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_key_xml.
 WHEN 'E_T_HASH'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_hash_xml.
 WHEN 'E_T_INDEX'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_index_xml.
 WHEN 'E_T_PARTITION'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_partition_xml.
 WHEN 'E_T_CHA_CONST'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_cha_const_xml.
 WHEN 'E_T_VALIDITY'.
 CALL TRANSFORMATION (`ID`) SOURCE (lt_srcbind) RESULT XML ev_validity_xml.
 ENDCASE.
 ENDLOOP.

 ENDFUNCTION.

4 Function Module Z_RFC_AUTH_CHECK - Check Authority RFC

4.1 General Information

System BI2

Function Module Z_RFC_AUTH_CHECK, Check Authority RFC

Function Pool Z_DP

Remote Yes

Last changed by TSCHMIDT

Last change (timestamp) 24/08/2015

Timestamp of documentation 11/08/2020 16:29:29

4.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_COMPID TYPE XUVAL X Name (ID) of a reporting component

I_PROVIDER TYPE XUVAL X InfoProvider

I_INFOAREA TYPE XUVAL X X InfoArea

I_ACTIVITY TYPE XUVAL X Activity

I_OWNER TYPE XUVAL X Authorization Value

4.3 Tables

Parameter Associated Type Opt. Short text

T_USER LIKE BAPITGB Structure to transfer texts for BAPIs that read docu.

 Performer Suite Seite 9 von 77

4.4 Exceptions

Exception Short text

RELEASE_1_0

4.5 Source code Function module

FUNCTION Z_RFC_AUTH_CHECK.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(I_COMPID) TYPE XUVAL
*" VALUE(I_PROVIDER) TYPE XUVAL
*" VALUE(I_INFOAREA) TYPE XUVAL OPTIONAL
*" VALUE(I_ACTIVITY) TYPE XUVAL
*" VALUE(I_OWNER) TYPE XUVAL
*" TABLES
*" T_USER STRUCTURE BAPITGB
*" EXCEPTIONS
*" RELEASE_1_0
*"--

 TYPES: BEGIN OF ty_user,
 bname TYPE xubname,
 name_text TYPE ad_namtext,
 END OF ty_user.

 FIELD-SYMBOLS <fs_user> TYPE ty_user.

 DATA: lt_user TYPE TABLE OF ty_user,
 chk_comp TYPE c LENGTH 1,
 chk_comp1 TYPE c LENGTH 1.

 REFRESH t_user.

 SELECT bname name_text FROM user_addrp INTO TABLE lt_user.
 SORT lt_user.

 LOOP AT lt_user ASSIGNING <fs_user>.

 CLEAR: chk_comp, chk_comp1.

 CALL FUNCTION 'AUTHORITY_CHECK'
 EXPORTING
 user = <fs_user>-bname
 object = 'S_RS_COMP'
 field1 = 'RSZCOMPID'
 value1 = i_compid
 field2 = 'RSZCOMPTP'
 value2 = 'REP'
 field3 = 'RSINFOCUBE'
 value3 = i_provider
 field4 = 'ACTVT'
 value4 = i_activity
 field5 = 'RSINFOAREA'
 value5 = i_infoarea
 EXCEPTIONS
 user_dont_exist = 1
 user_is_authorized = 2
 user_not_authorized = 3
 user_is_locked = 4
 OTHERS = 5.
 IF sy-subrc = 2.
 chk_comp = 'X'.
 ENDIF.

 CALL FUNCTION 'AUTHORITY_CHECK'
 EXPORTING
 user = <fs_user>-bname
 object = 'S_RS_COMP1'
 field1 = 'RSZCOMPID'
 value1 = i_compid
 field2 = 'RSZCOMPTP'
 value2 = 'REP'
 field3 = 'RSZOWNER'
 value3 = i_owner
 field4 = 'ACTVT'
 value4 = i_activity

 Performer Suite Seite 10 von 77

 field5 = ''
 value5 = ''
 EXCEPTIONS
 user_dont_exist = 1
 user_is_authorized = 2
 user_not_authorized = 3
 user_is_locked = 4
 OTHERS = 5.

 IF sy-subrc = 2.
 chk_comp1 = 'X'.
 ENDIF.

 IF chk_comp = 'X' AND chk_comp1 = 'X'.
 APPEND <fs_user> TO t_user.
 ENDIF.

 ENDLOOP.

ENDFUNCTION.

5 Function Module Z_RFC_CHECK_ACT_TR - Test RFC

5.1 General Information

System BI2

Function Module Z_RFC_CHECK_ACT_TR, Test RFC

Function Pool Z_DP

Remote Yes

Last changed by ADUERRSTEIN

Last change (timestamp) 11/02/2019

Timestamp of documentation 11/08/2020 16:29:32

5.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

IV_MODE TYPE CHAR1 '1' X

IV_XML_OBJECTS TYPE STRING X

IV_TRANSPORT TYPE TRKORR X X

5.3 Export Parameter

Parameter Associated Type Pass Short text

EV_XML_STATUS TYPE STRING X

5.4 Exceptions

Exception Short text

RELEASE_1_0

5.5 Source code Function module

FUNCTION Z_RFC_CHECK_ACT_TR.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(IV_MODE) TYPE CHAR1 DEFAULT '1'
*" VALUE(IV_XML_OBJECTS) TYPE STRING
*" VALUE(IV_TRANSPORT) TYPE TRKORR OPTIONAL
*" EXPORTING
*" VALUE(EV_XML_STATUS) TYPE STRING
*" EXCEPTIONS
*" RELEASE_1_0
*"--
 TYPES:
 BEGIN OF ty_message,

 Performer Suite Seite 11 von 77

 message_type TYPE sy-msgty,
 message TYPE string,
 END OF ty_message.
 TYPES: tt_messages TYPE STANDARD TABLE OF ty_message WITH DEFAULT KEY.

 TYPES:
 BEGIN OF ty_status,
 tlogo TYPE rstlogo,
 objnm TYPE sobj_name,
 actflg TYPE rsawbn_obj_activflg,
 objstat TYPE rsobjstat,
 saved TYPE rs_bool,
 activflg TYPE rsawbn_obj_activflg,
 locked TYPE rs_bool,
 tr_lock TYPE rs_bool,
 no_handler TYPE rs_bool,
 written_to_tr TYPE rs_bool,
 activation_successful TYPE rs_bool,
 messages TYPE tt_messages,
 END OF ty_status.

 DATA: lt_objects TYPE rso_t_tlogo.
 DATA: lt_status TYPE TABLE OF ty_status.
 DATA: lv_objvers TYPE rs_objvers.
 DATA: lo_tlogo TYPE REF TO if_rso_tlogo.
 DATA: lv_objstat TYPE rsobjstat.
 DATA: lo_msg TYPE REF TO cl_rso_msg.
 DATA: lt_object_details TYPE rso_t_cto_tlogo_prop.
 DATA: lv_request TYPE trkorr.
 DATA: lv_error TYPE rs_bool.
 DATA: lt_tr_msg TYPE bapirettab.
 DATA: lo_awbn_factory TYPE REF TO cl_rsawbn_obj_factory.
 DATA: lo_awbn_object TYPE REF TO cl_rsawbn_obj.
 DATA: lt_enq TYPE TABLE OF seqg3.
 DATA: lv_garg TYPE eqegraarg.
 DATA: lv_logsys TYPE rsrlogsys.
 DATA: ls_tlogoprop TYPE rstlogoprop.
 DATA: lt_msg TYPE rs_t_msg.
 DATA: lv_repaired TYPE rs_bool.
 DATA: lv_subrc TYPE sysubrc.

 FIELD-SYMBOLS: <ls_enq> TYPE seqg3.
 FIELD-SYMBOLS: <message> TYPE ty_message.
 FIELD-SYMBOLS: <ls_status> TYPE ty_status.
 FIELD-SYMBOLS: <ls_object> TYPE rso_s_tlogo.
 FIELD-SYMBOLS: <ls_msg> TYPE rs_s_msg.
 FIELD-SYMBOLS: <ls_tr_obj> TYPE trexreqob.

 CALL TRANSFORMATION (`ID`) SOURCE XML iv_xml_objects RESULT xml_objects = lt_objects.

 " only accept 1 - check / 2 - activate / 3 - transport mode
 ASSERT iv_mode = 1 OR iv_mode = 2 OR iv_mode = 3.

 CHECK lt_objects IS NOT INITIAL. " no objects -> nothing to do

 " create AWBN Factory for later usage
 CREATE OBJECT lo_awbn_factory.

 LOOP AT lt_objects ASSIGNING <ls_object>.

 " Prepare Status Output
 APPEND INITIAL LINE TO lt_status ASSIGNING <ls_status>.

 " Fill general fields
 <ls_status>-tlogo = <ls_object>-tlogo.
 <ls_status>-objnm = <ls_object>-objnm.

 " get logsys
 lv_logsys = cl_rso_repository=>get_logical_system_self().
 " get tlogoprops
 cl_rso_repository=>get_tlogoprop(EXPORTING i_tlogo = <ls_object>-tlogo IMPORTING

e_s_tlogoprop = ls_tlogoprop).

 TRY .
 " Check A Version

 Performer Suite Seite 12 von 77

 lv_objvers = 'A'.
 CALL METHOD cl_rso_object_collection_cache=>get_object_properties
 EXPORTING
 i_tlogo = <ls_object>-tlogo
 i_objnm = <ls_object>-objnm
 i_objvers = lv_objvers
 i_objlogsys = lv_logsys
 i_bypassing_buffer = abap_true
 i_no_message = abap_true
 IMPORTING
 e_objstat = lv_objstat
 EXCEPTIONS
 object_not_found = 1.
 CATCH cx_root.
 " Check M Version
 lv_objvers = 'M'.
 CALL METHOD cl_rso_object_collection_cache=>get_object_properties
 EXPORTING
 i_tlogo = <ls_object>-tlogo
 i_objnm = <ls_object>-objnm
 i_objvers = lv_objvers
 i_objlogsys = lv_logsys
 i_bypassing_buffer = abap_true
 i_no_message = abap_true
 IMPORTING
 e_objstat = lv_objstat
 EXCEPTIONS
 object_not_found = 1.
 ENDTRY.

 " fill Object Status
 <ls_status>-objstat = lv_objstat.

 " Check if tlogo class is available
 IF ls_tlogoprop-class IS NOT INITIAL.
 CALL METHOD (ls_tlogoprop-class)=>if_rso_tlogo~get_instance
 EXPORTING
 i_objnm = <ls_object>-objnm
 RECEIVING
 r_r_tlogo = lo_tlogo.
 ELSE.
 <ls_status>-no_handler = abap_true.
 ENDIF.

 " saved?
 IF lo_tlogo IS BOUND.
 <ls_status>-saved = lo_tlogo->if_rso_tlogo_maintain~is_saved().
 ENDIF.

 IF iv_mode = '1'. " Check Mode

 " Check for M / A Version
 lo_awbn_factory->get_instance(
 EXPORTING
 i_tlogo = <ls_object>-tlogo
 i_objnm = <ls_object>-objnm
 RECEIVING
 re_r_awbobj = lo_awbn_object).

 <ls_status>-activflg = lo_awbn_object->get_activflg(). " U -> M <> A Version / X -> M = A

Version / '' no information
 "Special case Analysis Auth.
 IF <ls_object>-tlogo = 'ASOB'.
 DATA: lt_objstat TYPE TABLE OF rsobjstat.
 SELECT objstat
 FROM rsecbiau
 INTO TABLE lt_objstat
 WHERE auth = <ls_object>-objnm.

 FIND 'INA' IN TABLE lt_objstat.

 IF sy-subrc = 0.
 <ls_status>-activflg = 'U'.
 ENDIF.
 "special case 7.x InfoSources
 ELSEIF <ls_object>-tlogo = 'TRCS'.
 DATA: lv_timstmp_a TYPE rstimestmp,
 lv_timstmp_m TYPE rstimestmp.

 Performer Suite Seite 13 von 77

 SELECT SINGLE timestmp
 FROM rsksnew
 INTO lv_timstmp_a
 WHERE isource = <ls_object>-objnm
 AND objvers = 'A'.

 SELECT SINGLE timestmp
 FROM rsksnew
 INTO lv_timstmp_m
 WHERE isource = <ls_object>-objnm
 AND objvers = 'M'.

 IF lv_timstmp_m > lv_timstmp_a.
 <ls_status>-activflg = 'U'.
 ENDIF.
 ENDIF.

 " check for lock
 CALL FUNCTION 'ENQUEUE_READ'
 EXPORTING
 gclient = sy-mandt
 guname = ''
 TABLES
 enq = lt_enq.

 CONCATENATE <ls_object>-objnm '*' INTO lv_garg.

 LOOP AT lt_enq ASSIGNING <ls_enq> WHERE garg CP lv_garg. " AND gobj = ls_tlogoprop-

enqobject.
 ENDLOOP.
 IF sy-subrc = 0.
 <ls_status>-locked = abap_true.
 ENDIF.

 " transport locks
 DATA: ls_e071 TYPE e071.
 DATA: lv_result TYPE trpari-s_checked.
 DATA: ls_tadir TYPE tadir.
 DATA: ls_lock_key TYPE tlock_int.
 DATA: lt_tlock TYPE TABLE OF tlock.
 DATA: lv_lockflag TYPE trpari-s_lockflag.

 ls_e071-pgmid = 'R3TR'.
 ls_e071-object = <ls_object>-tlogo.
 ls_e071-obj_name = <ls_object>-objnm.

 CALL FUNCTION 'TR_CHECK_TYPE'
 EXPORTING
 wi_e071 = ls_e071
 IMPORTING
 pe_result = lv_result
 we_lock_key = ls_lock_key
 we_tadir = ls_tadir.

 " determine lock key for complete object (TADIR)
 IF ls_e071-pgmid = ls_tadir-pgmid
 AND ls_e071-object = ls_tadir-object
 AND ls_e071-obj_name = ls_tadir-obj_name.
 " object is already complete (TADIR object): lock key is already known
 ELSE.
 MOVE-CORRESPONDING ls_tadir TO ls_e071.
 CALL FUNCTION 'TR_CHECK_TYPE'
 EXPORTING
 wi_e071 = ls_e071
 IMPORTING
 pe_result = lv_result
 we_lock_key = ls_lock_key
 we_tadir = ls_tadir.
 ENDIF.
 " proceed only for lockable objects
 IF lv_result = 'L'.
 " determine locks refering to complete (TADIR) object
 CALL FUNCTION 'TRINT_CHECK_LOCKS'
 EXPORTING
 wi_lock_key = ls_lock_key
 IMPORTING
 we_lockflag = lv_lockflag
 TABLES

 Performer Suite Seite 14 von 77

 wt_tlock = lt_tlock
 EXCEPTIONS
 empty_key = 1
 OTHERS = 2.
 IF lv_lockflag = abap_true.
 <ls_status>-tr_lock = abap_true.
 ELSE.
 <ls_status>-tr_lock = abap_false.
 ENDIF.

 ELSE.
 <ls_status>-tr_lock = abap_false.
 ENDIF.

 IF lo_tlogo IS BOUND.
 lo_tlogo->if_rso_tlogo_maintain~check(
 EXPORTING
 i_objvers = lv_objvers
 IMPORTING
 e_r_msg = lo_msg
 e_is_repaired = lv_repaired
 e_subrc = lv_subrc).

 IF lo_msg IS BOUND.
 lt_msg = lo_msg->get_all_msg().

 LOOP AT lt_msg ASSIGNING <ls_msg>.
 APPEND INITIAL LINE TO <ls_status>-messages ASSIGNING <message>.
 <message>-message_type = <ls_msg>-msgty.
 MESSAGE ID <ls_msg>-msgid TYPE <ls_msg>-msgty NUMBER <ls_msg>-msgno
 WITH <ls_msg>-msgv1 <ls_msg>-msgv2 <ls_msg>-msgv3 <ls_msg>-msgv4
 INTO <message>-message.
 ENDLOOP.
 ENDIF.
 ENDIF.

 ENDIF.

 IF iv_mode = '2'. " Activation Mode

 IF lo_tlogo IS NOT BOUND.
 EXIT.
 ENDIF.

 " Run Check before activation.
 IF lo_tlogo IS BOUND.
 lo_tlogo->if_rso_tlogo_maintain~check(
 EXPORTING
 i_objvers = lv_objvers
 IMPORTING
 e_r_msg = lo_msg
 e_is_repaired = lv_repaired
 e_subrc = lv_subrc).
 IF lo_msg IS BOUND.
 lt_msg = lo_msg->get_all_msg().

 DELETE lt_msg WHERE NOT (msgty EQ 'E' OR msgty EQ 'W'). " only look for errors and

warnings
 IF lt_msg IS NOT INITIAL. " Error messages found? return messages - skip activation
 LOOP AT lt_msg ASSIGNING <ls_msg>.
 APPEND INITIAL LINE TO <ls_status>-messages ASSIGNING <message>.
 <message>-message_type = <ls_msg>-msgty.
 MESSAGE ID <ls_msg>-msgid TYPE <ls_msg>-msgty NUMBER <ls_msg>-msgno
 WITH <ls_msg>-msgv1 <ls_msg>-msgv2 <ls_msg>-msgv3 <ls_msg>-msgv4
 INTO <message>-message.
 ENDLOOP.
 ENDIF.
 ENDIF.
 ENDIF.
 TRY.
 lo_tlogo->if_rso_tlogo_maintain~prepare(
 EXPORTING
 i_with_enqueue = rs_c_false " = 'X': with Enqueue Lock
 i_with_cto_check = rs_c_false " = 'X': with CTO Check
 i_with_authority = rs_c_false " = 'X': with Authorization
 i_with_rebuild = rs_c_false " = 'X': Database Must Reread the Object
 i_actvt = rssb_c_auth_actvt-maintain " Activity

 Performer Suite Seite 15 von 77

 i_objvers = rs_c_objvers-active " Object version
 i_detlevel = '3' " Application Log: Level of Detail
).
 CATCH cx_rs_cancelled.
 CATCH cx_rs_not_authorized.
 CATCH cx_rs_display_only.
 ENDTRY.

 lo_tlogo->if_rso_tlogo_maintain~activate(
 EXPORTING
 i_objvers = lv_objvers " Object Version (A / M)
 i_force_activation = rs_c_true " = 'X': activate in case the object is already

active
 i_show_check_protocol = rs_c_false " = 'X': Display Consistency Log as Popup if

Warnings Arise
 i_with_cto = rs_c_false
 IMPORTING
 e_subrc = lv_subrc).

 IF lv_subrc = 0.
 <ls_status>-activation_successful = abap_true.
 APPEND INITIAL LINE TO <ls_status>-messages ASSIGNING <message>.
 <message>-message_type = 'S'.
 <message>-message = 'Activation successful'.
 ELSE.
 <ls_status>-activation_successful = abap_false.
 APPEND INITIAL LINE TO <ls_status>-messages ASSIGNING <message>.
 <message>-message_type = 'E'.
 <message>-message = 'Activation failed'.
 ENDIF.

 ENDIF.

 IF iv_mode = '3'. " Transport Mode
 CHECK iv_transport IS NOT INITIAL.

 DATA: ls_wi_e071 LIKE e071.
 ls_wi_e071-pgmid = 'R3TR'.
 ls_wi_e071-object = <ls_object>-tlogo.
 ls_wi_e071-obj_name = <ls_object>-objnm.

 CALL FUNCTION 'TR_APPEND_TO_COMM'
 EXPORTING
 pi_korrnum = iv_transport
 wi_e071 = ls_wi_e071
 EXCEPTIONS
 no_authorization = 1
 no_systemname = 2
 no_systemtype = 3
 tr_check_keysyntax_error = 4
 tr_check_obj_error = 5
 tr_enqueue_failed = 6
 tr_ill_korrnum = 7
 tr_key_without_header = 8
 tr_lockmod_failed = 9
 tr_lock_enqueue_failed = 10
 tr_modif_only_in_modif_order = 11
 tr_not_owner = 12
 tr_no_append_of_corr_entry = 13
 tr_no_append_of_c_member = 14
 tr_no_shared_repairs = 15
 tr_order_not_exist = 16
 tr_order_released = 17
 tr_order_update_error = 18
 tr_repair_only_in_repair_order = 19
 tr_wrong_order_type = 20
 wrong_client = 21
 OTHERS = 22.
 IF sy-subrc <> 0.
 <ls_status>-written_to_tr = abap_false.
 ELSE.
 <ls_status>-written_to_tr = abap_true.
 ENDIF.
 FREE: ls_wi_e071.

 ENDIF.

 ENDLOOP.

 Performer Suite Seite 16 von 77

 CALL TRANSFORMATION (`ID`) SOURCE status = lt_status RESULT XML ev_xml_status.

ENDFUNCTION.

6 Function Module Z_RFC_CODESCAN - ABAP source scan (RFC)

6.1 General Information

System BI2

Function Module Z_RFC_CODESCAN, ABAP source scan (RFC)

Function Pool Z_DP

Remote Yes

Last changed by AKOLMOG

Last change (timestamp) 18/09/2019

Timestamp of documentation 11/08/2020 16:29:36

6.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_CASE TYPE RS_BOOL '' X X

I_SKIP_COMMENT TYPE RS_BOOL 'X' X X

I_REGEX TYPE RS_BOOL '' X X

I_UPDRU TYPE RS_BOOL 'X' X X

I_TRANR TYPE RS_BOOL 'X' X X

I_TRANS TYPE RS_BOOL 'X' X X

I_IOBJROUT TYPE RS_BOOL 'X' X X

I_IP TYPE RS_BOOL X X

I_DTP TYPE RS_BOOL X X

I_REPS TYPE RS_BOOL X X

I_CLAS TYPE RS_BOOL X X

I_FUNC TYPE RS_BOOL X X

I_PLSE TYPE RS_BOOL X X

6.3 Tables

Parameter Associated Type Opt. Short text

T_STRING_RANGE LIKE RSRANGE

T_DEVCL_RANGE LIKE RSRANGE

T_REPS_RANGE LIKE RSRANGE

T_SUBC_RANGE LIKE RSRANGE

T_CLAS_RANGE LIKE RSRANGE

T_FUGR_RANGE LIKE RSRANGE

DATA LIKE TAB512

6.4 Exceptions

Exception Short text

RELEASE_2_1

INPUT_CANNOT_BE_TREAT
ED

6.5 Source code Function module

FUNCTION Z_RFC_CODESCAN.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(I_CASE) TYPE RS_BOOL DEFAULT ''

 Performer Suite Seite 17 von 77

*" VALUE(I_SKIP_COMMENT) TYPE RS_BOOL DEFAULT 'X'
*" VALUE(I_REGEX) TYPE RS_BOOL DEFAULT ''
*" VALUE(I_UPDRU) TYPE RS_BOOL DEFAULT 'X'
*" VALUE(I_TRANR) TYPE RS_BOOL DEFAULT 'X'
*" VALUE(I_TRANS) TYPE RS_BOOL DEFAULT 'X'
*" VALUE(I_IOBJROUT) TYPE RS_BOOL DEFAULT 'X'
*" VALUE(I_IP) TYPE RS_BOOL OPTIONAL
*" VALUE(I_DTP) TYPE RS_BOOL OPTIONAL
*" VALUE(I_REPS) TYPE RS_BOOL OPTIONAL
*" VALUE(I_CLAS) TYPE RS_BOOL OPTIONAL
*" VALUE(I_FUNC) TYPE RS_BOOL OPTIONAL
*" VALUE(I_PLSE) TYPE RS_BOOL OPTIONAL
*" TABLES
*" T_STRING_RANGE STRUCTURE RSRANGE
*" T_DEVCL_RANGE STRUCTURE RSRANGE
*" T_REPS_RANGE STRUCTURE RSRANGE
*" T_SUBC_RANGE STRUCTURE RSRANGE
*" T_CLAS_RANGE STRUCTURE RSRANGE
*" T_FUGR_RANGE STRUCTURE RSRANGE
*" DATA STRUCTURE TAB512
*" EXCEPTIONS
*" RELEASE_2_1
*" INPUT_CANNOT_BE_TREATED
*"--

 DATA:
 ls_data LIKE LINE OF data,
 ls_result TYPE s_result,
 ls_line TYPE c LENGTH 255,
 lv_nspacegen TYPE namespace,
 lv_name_w_o_prefix TYPE rs_char30,
 lt_string TYPE t_string,
 ls_string TYPE s_string.

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange.

*--

 CLEAR:
 gt_rsaabap,
 gt_object,
 gt_result.

 LOOP AT t_string_range ASSIGNING <s_range>.

 IF (<s_range>-high = 'ODSO' OR <s_range>-high = 'CUBE'
 OR <s_range>-high = 'CHAR' OR <s_range>-high = 'IOBJ')
 OR <s_range>-high = 'ADSO'. "ADü_20189424 - DP-96
 CALL FUNCTION 'RSD_NSPACE_PAR_GET_FROM_NAME'
 EXPORTING
 i_objnm = <s_range>-low
 IMPORTING
* E_NAMESPACE =
 e_nspacegen = lv_nspacegen
* E_SYSTP =
 e_name_w_o_prefix = lv_name_w_o_prefix
* E_SOBJNM_W_O_PREFIX =
 EXCEPTIONS
 name_error = 1
 OTHERS = 2.

 IF sy-subrc = 0.
 "regular expressions: the . is a placeholder for a single sign
 IF <s_range>-high = 'ODSO'.
 "sign after prefix is A
 CONCATENATE lv_nspacegen 'A' lv_name_w_o_prefix '.0'
 INTO ls_string.
 "Start Change ADü_20189424 - DP-96
 ELSEIF <s_range>-high = 'ADSO'.
 "sign after prefix is A
 CONCATENATE lv_nspacegen 'A' lv_name_w_o_prefix '.'
 INTO ls_string.
 "End Change ADü_20189424 - DP-96
 ELSEIF <s_range>-high = 'CUBE'.
 "sign after prefix can be D,E or F
 CONCATENATE lv_nspacegen '.' lv_name_w_o_prefix

 Performer Suite Seite 18 von 77

 INTO ls_string.
 ELSEIF (<s_range>-high = 'CHAR' OR <s_range>-high = 'IOBJ').
 CONCATENATE lv_nspacegen '.' lv_name_w_o_prefix
 INTO ls_string.

 "Start Change ADü_20180426 - DP-1945
 DATA: ls_string2 TYPE s_string,
 ls_string3 TYPE s_string,
 ls_fieldnm TYPE rsdiobjfieldnm.

 SELECT SINGLE fieldnm
 FROM rsdiobj
 INTO ls_fieldnm
 WHERE iobjnm = <s_range>-low
 AND objvers = 'A'.

 IF ls_fieldnm IS NOT INITIAL.

 CONCATENATE '-' ls_fieldnm '\.' INTO ls_string2.
 APPEND ls_string2 TO lt_string.
 CONCATENATE '-' ls_fieldnm '\s' INTO ls_string3.
 APPEND ls_string3 TO lt_string.

 ENDIF.
 "End Change ADü_20180426 - DP-1945

 ENDIF.
 ENDIF.
 ELSE.
 ls_string = <s_range>-low.
 ENDIF.

 APPEND ls_string TO lt_string.

 ENDLOOP.

 IF i_updru = 'X' OR i_tranr = 'X' OR i_trans = 'X'
 OR i_iobjrout = 'X'.
 PERFORM scan_rsaabap
 TABLES lt_string
 USING i_skip_comment i_case i_regex i_updru
 i_tranr i_trans i_iobjrout.
 ENDIF.

 IF i_dtp = 'X'.
 PERFORM scan_dtp
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.
 ENDIF.

 IF i_ip = 'X'.
 PERFORM scan_ip
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.
 ENDIF.

 IF i_reps = 'X'.
 PERFORM get_reps
 TABLES t_devcl_range t_reps_range t_subc_range.
 ENDIF.

 IF i_clas = 'X'.
 PERFORM get_clas
 TABLES t_devcl_range t_clas_range.
 ENDIF.

 IF i_func = 'X'.
 PERFORM get_func
 TABLES t_devcl_range t_fugr_range.
 ENDIF.

 IF i_plse = 'X'.
 PERFORM get_plse
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.
 ENDIF.

 Performer Suite Seite 19 von 77

 IF NOT gt_object IS INITIAL.
 PERFORM scan_include_code
 TABLES lt_string
 USING i_skip_comment i_case i_regex.
 ENDIF.

 "Fill result table
 LOOP AT gt_result INTO ls_result.
 IF i_skip_comment = 'X'.
 IF ls_result-line(1) = '*'.
 CONTINUE.
 ELSE.
 ls_line = ls_result-line.
 SHIFT ls_line LEFT DELETING LEADING space.
 "Start change ADü_20180618 - DP-1210
 "AMDP Code
 IF ls_result-routinetype = 'RT20'
 OR ls_result-routinetype = 'RT21'
 OR ls_result-routinetype = 'RT22'
 OR ls_result-routinetype = 'RT23'
 OR ls_result-routinetype = 'RT24'
 OR ls_result-routinetype = 'RT30'
 OR ls_result-routinetype = 'RT31'
 OR ls_result-routinetype = 'RT32'
 OR ls_result-routinetype = 'RT33'.
 IF ls_line(2) = '--'.
 CONTINUE.
 ENDIF.
 "ABAP Code
 ELSE.
 "End change ADü_20180618 - DP-1210
 IF ls_line(1) = '"'.
 CONTINUE.
 ENDIF.
 "Start change ADü_20180618 - DP-1210
 ENDIF.
 "End change ADü_20180618 - DP-1210
 ENDIF.
 ENDIF.
 ls_data = ls_result.
 APPEND ls_data TO data.

 ENDLOOP.

ENDFUNCTION.

&--
*& Form scan_rsaabap
&--
* text

FORM scan_rsaabap
 TABLES lt_string
 USING i_skip_comment i_case i_regex i_updru i_tranr
 i_trans i_iobjrout.

 TYPES:
 BEGIN OF s_lookup,
 targetname LIKE rstran-targetname,
 targettype LIKE rstran-targettype,
 targetsubtype LIKE rstran-targetsubtype,
 sourcename LIKE rstran-sourcename,
 sourcetype LIKE rstran-sourcetype,
 sourcesubtype LIKE rstran-sourcesubtype,
 codeid LIKE rsaabap-codeid,
 tranid LIKE rstran-tranid,
 set_runtime TYPE char1,
 iobjnm LIKE rsupdrout-iciobjnm,
 routinetype TYPE c LENGTH 4,
 routine TYPE n LENGTH 4,
 END OF s_lookup,
 t_lookup TYPE STANDARD TABLE OF s_lookup.

 DATA:
 l_tabix LIKE sy-tabix,
 lt_rsaabap TYPE t_rsaabap,

 Performer Suite Seite 20 von 77

 ls_rsaabap TYPE s_rsaabap,
 ls_match_result TYPE match_result,
 lt_lookup_finder TYPE t_lookup,
 ls_lookup_temp TYPE s_lookup,
 lt_lookup_temp TYPE t_lookup,
 ls_lookup TYPE s_lookup,
 l_updtype LIKE rsupddat-updtype,
 ls_result TYPE s_result,
 lv_txtlg TYPE rstxtlg.

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange.

 CLEAR gt_rsaabap.
* Restrict on version M, because RSAABAP contains deleted coding
* that exists only in version A but not in version M!
 SELECT a~codeid codetp line_no line
 FROM rsaabap AS a
 INNER JOIN rsarout AS r
 ON a~codeid = r~codeid AND a~objvers = r~objvers
 INTO CORRESPONDING FIELDS OF TABLE gt_rsaabap
 WHERE a~objvers = 'A'
 AND a~codeid IN (
 SELECT codeid FROM rsarout
 WHERE objvers = 'M'). "#EC *

 "Start Change ADü_20180618 - DP-1210
 DATA: lv_rstranscript TYPE string VALUE 'RSTRANSCRIPT',
 lv_rstranstepscript TYPE string VALUE 'RSTRANSTEPSCRIPT',
 lv_rstransteprout TYPE string VALUE 'RSTRANSTEPROUT',
 lv_bwrelease TYPE saprelease,
 lv_bw4hana TYPE rs_bool VALUE ''.

 TYPES: BEGIN OF lty_sscript,
 tranid TYPE rstranid,
 script TYPE string,
 ruleid TYPE rstran_ruleid,
 stepid TYPE rstran_stepid,
 codeid TYPE rscodeid,
 line_no TYPE rsaabap-line_no,
 END OF lty_sscript,

 BEGIN OF lty_script,
 tranid TYPE rstranid,
 procnm TYPE char30,
 codeid TYPE rscodeid,
 script TYPE string,
 line_no TYPE rsaabap-line_no,
 END OF lty_script,

 BEGIN OF lty_rstransteprout,
 tranid TYPE rstranid,
 ruleid TYPE rstran_ruleid,
 stepid TYPE rstran_stepid,
 codeid TYPE rscodeid,
 on_hana TYPE rs_bool,
 line_no TYPE rsaabap-line_no,
 kind TYPE char7,
 code TYPE string,
 code_inv TYPE string,
 END OF lty_rstransteprout.

 DATA: ls_script TYPE lty_script,
 ls_g_script TYPE lty_script,
 ls_sscript TYPE lty_sscript,
 ls_g_sscript TYPE lty_sscript,
 lt_script TYPE TABLE OF lty_script,
 lt_g_script TYPE TABLE OF lty_script,
 lt_sscript TYPE TABLE OF lty_sscript,
 lt_g_sscript TYPE TABLE OF lty_sscript,
 ls_rstransteprout TYPE lty_rstransteprout,
 ls_g_rstransteprout TYPE lty_rstransteprout,
 lt_rstransteprout TYPE TABLE OF lty_rstransteprout,
 lt_g_rstransteprout TYPE TABLE OF lty_rstransteprout..

 SELECT SINGLE release

 Performer Suite Seite 21 von 77

 FROM cvers
 INTO lv_bwrelease
 WHERE component = 'SAP_BW'.

 IF lv_bwrelease IS INITIAL.
 lv_bw4hana = rs_c_true.
 SELECT SINGLE release
 FROM cvers
 INTO lv_bwrelease
 WHERE component = 'DW4CORE'.
 ENDIF.

 IF lv_bw4hana = rs_c_false.
 IF lv_bwrelease < 740.
 "nothing
 ELSEIF lv_bwrelease >= 740 AND lv_bwrelease < 750.

 SELECT tranid procnm script
 FROM (lv_rstranscript)
 INTO CORRESPONDING FIELDS OF TABLE lt_script
 WHERE objvers = 'A'.

 ELSEIF lv_bwrelease >= 750.

 SELECT tranid procnm script
 FROM (lv_rstranscript)
 INTO CORRESPONDING FIELDS OF TABLE lt_script
 WHERE objvers = 'A'.

 SELECT tranid ruleid stepid codeid script
 FROM (lv_rstranstepscript)
 INTO CORRESPONDING FIELDS OF TABLE lt_sscript
 WHERE objvers = 'A'.
 ENDIF.
 ELSEIF lv_bw4hana = rs_c_true.
 SELECT tranid ruleid stepid codeid code code_inv
 FROM (lv_rstransteprout)
 INTO CORRESPONDING FIELDS OF TABLE lt_rstransteprout
 WHERE objvers = 'A'.
 ENDIF.
 "End Change ADü_20180618 - DP-1210

 "Start Change ADü_20180426 - DP-1945
 DATA: ls_complstring TYPE string.
 LOOP AT lt_string ASSIGNING <string>.
 IF sy-tabix = 1.
 ls_complstring = <string>.
 ELSE.
 CONCATENATE ls_complstring '|' <string> INTO ls_complstring.
 ENDIF.
 ENDLOOP.
 "End Change ADü_20180426 - DP-1945

 SORT gt_rsaabap BY codeid.
 LOOP AT gt_rsaabap INTO ls_rsaabap.
 l_tabix = sy-tabix.
 "LOOP AT lt_string ASSIGNING <string>. "ADü_20180426 - DP-1945
 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring "<string> "ADü_20180426 - DP-1945
 IN ls_rsaabap-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring "<string> "ADü_20180426 - DP-1945
 IN ls_rsaabap-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring "<string> "ADü_20180426 - DP-1945
 IN ls_rsaabap-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring "<string> "ADü_20180426 - DP-1945

 Performer Suite Seite 22 von 77

 IN ls_rsaabap-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.
 IF sy-subrc <> 0.
 DELETE gt_rsaabap INDEX l_tabix.
 ENDIF.
 "ENDLOOP. "ADü_20180426 - DP-1945
 ENDLOOP.

 "Start Change ADü_20180618 - DP-1210
 "get the full scripts with comments:
 CLASS cl_oo_include_naming DEFINITION LOAD.
 DATA lo_clif_incl_naming TYPE REF TO if_oo_clif_incl_naming.
 DATA lo_class_incl_naming TYPE REF TO if_oo_class_incl_naming.
 DATA l_t_method_w_include TYPE seop_methods_w_include.
 FIELD-SYMBOLS: <s_method_w_include> TYPE seop_method_w_include.
 DATA: l_clskey TYPE seoclskey,
 lt_abap TYPE abaptxt255_tab,
 ls_abap TYPE LINE OF abaptxt255_tab,
 length TYPE i,
 last TYPE char30.

 "HANA Script
 LOOP AT lt_script INTO ls_script.

 CONCATENATE '/BIC/' ls_script-procnm+3 INTO l_clskey.

 CALL METHOD cl_oo_include_naming=>get_instance_by_cifkey
 EXPORTING
 cifkey = l_clskey
 RECEIVING
 cifref = lo_clif_incl_naming
 EXCEPTIONS
 no_objecttype = 1
 internal_error = 2
 OTHERS = 3.

 IF sy-subrc = 0.
 lo_class_incl_naming ?= lo_clif_incl_naming.
 l_t_method_w_include =
 lo_class_incl_naming->get_all_method_includes().
 LOOP AT l_t_method_w_include ASSIGNING <s_method_w_include>.
 CLEAR: length, last.
 length = strlen(<s_method_w_include>-cpdkey) - 9.
 last = <s_method_w_include>-cpdkey+length.
 IF last = 'PROCEDURE'.
 CLEAR lt_abap.
 READ REPORT <s_method_w_include>-incname INTO lt_abap.
 LOOP AT lt_abap INTO ls_abap.
 ls_g_script-tranid = ls_script-tranid.
 ls_g_script-procnm = ls_script-procnm.
 ls_g_script-codeid = ls_script-procnm+3.
 ls_g_script-script = ls_abap.
 ls_g_script-line_no = sy-tabix.
 APPEND ls_g_script TO lt_g_script.
 ENDLOOP.
 ENDIF.
 ENDLOOP.
 ENDIF.
 ENDLOOP.

 "AMDP
 LOOP AT lt_sscript INTO ls_sscript.

 CONCATENATE '/BIC/' ls_sscript-codeid INTO l_clskey.

 CALL METHOD cl_oo_include_naming=>get_instance_by_cifkey
 EXPORTING
 cifkey = l_clskey
 RECEIVING
 cifref = lo_clif_incl_naming
 EXCEPTIONS
 no_objecttype = 1
 internal_error = 2
 OTHERS = 3.

 Performer Suite Seite 23 von 77

 IF sy-subrc = 0.
 lo_class_incl_naming ?= lo_clif_incl_naming.
 l_t_method_w_include =
 lo_class_incl_naming->get_all_method_includes().
 LOOP AT l_t_method_w_include ASSIGNING <s_method_w_include>.
 CLEAR: length, last.
 length = strlen(<s_method_w_include>-cpdkey) - 9.
 last = <s_method_w_include>-cpdkey+length.
 IF last = 'PROCEDURE'.
 CLEAR lt_abap.
 READ REPORT <s_method_w_include>-incname INTO lt_abap.
 LOOP AT lt_abap INTO ls_abap.
 ls_g_sscript-tranid = ls_sscript-tranid.
 ls_g_sscript-codeid = ls_sscript-codeid.
 ls_g_sscript-script = ls_abap.
 ls_g_sscript-line_no = sy-tabix.
 APPEND ls_g_sscript TO lt_g_sscript.
 ENDLOOP.
 ENDIF.
 ENDLOOP.
 ENDIF.
 ENDLOOP.

 "BW4HANA
 LOOP AT lt_rstransteprout INTO ls_rstransteprout.
 CLEAR lt_abap.
 SPLIT ls_rstransteprout-code AT cl_abap_char_utilities=>newline INTO TABLE lt_abap.
 LOOP AT lt_abap INTO ls_abap.
 ls_g_rstransteprout-tranid = ls_rstransteprout-tranid.
 ls_g_rstransteprout-codeid = ls_rstransteprout-codeid.
 ls_g_rstransteprout-code = ls_abap.
 ls_g_rstransteprout-line_no = sy-tabix.
 APPEND ls_g_rstransteprout TO lt_g_rstransteprout.
 ENDLOOP.
 ENDLOOP.

 "Search code in new tables:
 "RSTRANSCRIPT
 LOOP AT lt_g_script INTO ls_g_script.
 l_tabix = sy-tabix.
 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_script-script
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_script-script
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_script-script
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_script-script
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.
 IF sy-subrc <> 0.
 DELETE lt_g_script INDEX l_tabix.
 ENDIF.
 ENDLOOP.

 "RSTRANSTEPSCRIPT
 LOOP AT lt_g_sscript INTO ls_g_sscript.
 l_tabix = sy-tabix.
 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_sscript-script

 Performer Suite Seite 24 von 77

 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_sscript-script
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_sscript-script
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_sscript-script
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.
 IF sy-subrc <> 0.
 DELETE lt_g_sscript INDEX l_tabix.
 ENDIF.
 ENDLOOP.
 "End Change ADü_20180618 - DP-1210

 "RSTRANSTEPROUT
 SORT lt_g_rstransteprout BY codeid.
 LOOP AT lt_g_rstransteprout INTO ls_g_rstransteprout.
 l_tabix = sy-tabix.
 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_rstransteprout-code
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX ls_complstring
 IN ls_g_rstransteprout-code
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_rstransteprout-code
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ''.
 FIND FIRST OCCURRENCE OF ls_complstring
 IN ls_g_rstransteprout-code
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.
 IF sy-subrc <> 0.
 DELETE lt_g_rstransteprout INDEX l_tabix.
 ENDIF.
 ENDLOOP.

 IF gt_rsaabap IS INITIAL.
 "Start Change ADü_20180618 - DP-1210
 IF lt_g_script IS INITIAL AND lt_g_sscript IS INITIAL.
 "End Change ADü_20180618 - DP-1210
 IF lt_g_rstransteprout IS INITIAL.
 RETURN.
 ENDIF.
 "Start Change ADü_20180618 - DP-1210
 ENDIF.
 "End Change ADü_20180618 - DP-1210
 ENDIF.

 "--
 " Scan routines of Update Rules (3.x)

 Performer Suite Seite 25 von 77

 "--
 IF i_updru = 'X'.

 TYPES:
 BEGIN OF s_rsupd,
 updid LIKE rsupdinfo-updid,
 infocube LIKE rsupdinfo-infocube,
 isource LIKE rsupdinfo-isource,
 codeid LIKE rsupdrout-codeid,
 routine LIKE rsupdrout-routine,
 iciobjnm LIKE rsupdrout-iciobjnm,
 END OF s_rsupd,
 t_rsupd TYPE STANDARD TABLE OF s_rsupd.

 DATA: lt_rsupd TYPE t_rsupd.

 FIELD-SYMBOLS <s_rsupd> TYPE s_rsupd.

 CLEAR lt_rsaabap.
 LOOP AT gt_rsaabap INTO ls_rsaabap WHERE codetp = 'UR'.
 APPEND ls_rsaabap TO lt_rsaabap.
 ENDLOOP.
 IF NOT lt_rsaabap IS INITIAL.

 CLEAR lt_lookup_temp.
 SELECT a~updid infocube isource codeid routine iciobjnm
 INTO TABLE lt_rsupd
 FROM rsupdinfo AS a
 INNER JOIN rsupdrout AS b ON a~updid = b~updid
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 b~codeid = lt_rsaabap-codeid AND
 a~objvers = 'A' AND
 b~objvers = 'A'.

 LOOP AT lt_rsupd ASSIGNING <s_rsupd>.
 ls_lookup_temp-targetname = <s_rsupd>-infocube.
 ls_lookup_temp-sourcename = <s_rsupd>-isource.
 ls_lookup_temp-codeid = <s_rsupd>-codeid.
 IF <s_rsupd>-routine = '9998'.
 ls_lookup_temp-routinetype = 'RT07'.
 ELSEIF <s_rsupd>-routine = '9999'.
 ls_lookup_temp-routinetype = 'RT09'.
 ELSE.
 ls_lookup_temp-routinetype = 'RT08'.
 ENDIF.
 ls_lookup_temp-routine = <s_rsupd>-routine.
 ls_lookup_temp-tranid = <s_rsupd>-updid.
 ls_lookup_temp-iobjnm = <s_rsupd>-iciobjnm.
 APPEND ls_lookup_temp TO lt_lookup_temp.
 ENDLOOP.

 SORT lt_lookup_temp BY codeid.
 LOOP AT lt_rsaabap INTO ls_rsaabap.

 CLEAR ls_lookup.
 READ TABLE lt_lookup_temp INTO ls_lookup
 WITH KEY codeid = ls_rsaabap-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR l_updtype.
 SELECT SINGLE updtype INTO l_updtype FROM rsupddat
 WHERE
 updid = ls_lookup-tranid AND
 objvers = 'A' AND
 routine = ls_lookup-routine. "#EC *

 "no update
 IF l_updtype = 'NOP'.
 DELETE lt_rsaabap.
 ELSE.
 CLEAR ls_result.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_rsaabap TO ls_result.
 "Derive description of the Update Rule
 CONCATENATE ls_lookup-targetname ls_lookup-sourcename
 INTO ls_result-txtlg SEPARATED BY space.
 APPEND ls_result TO gt_result.
 ENDIF.

 Performer Suite Seite 26 von 77

 ENDIF.

 ENDLOOP.

 ENDIF.
 ENDIF.

 "--
 " Scan routines of Transfer Rules (3.x)
 "--
 IF i_tranr = 'X'.

 TYPES:
 BEGIN OF ty_rstsrules,"relevant for InfoObject Routines
 transtru LIKE rstsrules-transtru,
 comstru LIKE rstsrules-comstru,
 iobjnm LIKE rstsrules-iobjnm,
 convrout_l LIKE rstsrules-convrout_l,
 startroutine LIKE rsts-startroutine,
 END OF ty_rstsrules,
 t_rstsrules TYPE STANDARD TABLE OF ty_rstsrules.

 DATA lt_rstsrules TYPE t_rstsrules.
 FIELD-SYMBOLS <s_rstsrules> TYPE ty_rstsrules.

 TYPES:
 BEGIN OF ty_rsts,"relevant for Startroutine and Global code
 transtru LIKE rsts-transtru,
 odsname LIKE rsts-odsname,
 glbcode LIKE rsts-glbcode,
 startroutine LIKE rsts-startroutine,
 END OF ty_rsts,
 t_rsts TYPE STANDARD TABLE OF ty_rsts.

 DATA lt_rsts TYPE t_rsts.
 FIELD-SYMBOLS <s_rsts> TYPE ty_rsts.

 CLEAR lt_rsaabap.
 LOOP AT gt_rsaabap INTO ls_rsaabap WHERE codetp = 'TR'.
 APPEND ls_rsaabap TO lt_rsaabap.
 ENDLOOP.
 IF NOT lt_rsaabap IS INITIAL.

 CLEAR lt_lookup_temp.
 SELECT transtru comstru iobjnm convrout_l
 INTO TABLE lt_rstsrules
 FROM rstsrules
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 convrout_l = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 SELECT transtru odsname glbcode startroutine
 INTO TABLE lt_rsts
 FROM rsts
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 (glbcode = lt_rsaabap-codeid OR
 startroutine = lt_rsaabap-codeid)
 AND
 objvers = 'A'.

 CLEAR ls_lookup_temp.
 LOOP AT lt_rstsrules ASSIGNING <s_rstsrules>.
 ls_lookup_temp-tranid = <s_rstsrules>-transtru.
 ls_lookup_temp-codeid = <s_rstsrules>-convrout_l.
 ls_lookup_temp-iobjnm = <s_rstsrules>-iobjnm.
 APPEND ls_lookup_temp TO lt_lookup_temp.
 ENDLOOP.

 CLEAR ls_lookup_temp.
 LOOP AT lt_rsts ASSIGNING <s_rsts>.
 ls_lookup_temp-tranid = <s_rsts>-transtru.
 ls_lookup_temp-iobjnm = ''.
 IF <s_rsts>-glbcode IS NOT INITIAL.
 ls_lookup_temp-codeid = <s_rsts>-glbcode.
 ls_lookup_temp-routinetype = 'RT12'.
 APPEND ls_lookup_temp TO lt_lookup_temp.

 Performer Suite Seite 27 von 77

 ENDIF.
 IF <s_rsts>-startroutine IS NOT INITIAL.
 ls_lookup_temp-codeid = <s_rsts>-startroutine.
 ls_lookup_temp-routinetype = 'RT10'.
 APPEND ls_lookup_temp TO lt_lookup_temp.
 ENDIF.
 ENDLOOP.

 SORT lt_lookup_temp BY codeid.
 LOOP AT lt_rsaabap INTO ls_rsaabap.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_temp INTO ls_lookup
 WITH KEY codeid = ls_rsaabap-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 IF ls_lookup-iobjnm IS NOT INITIAL.
 ls_lookup-routinetype = 'RT11'.
 ENDIF.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_rsaabap TO ls_result.

 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.

 ENDIF.
 ENDIF.

 "--
 " Scan routines of Transformations (7.x)
 "--
 IF i_trans = 'X'.

 CLEAR lt_rsaabap.
 LOOP AT gt_rsaabap INTO ls_rsaabap WHERE codetp = 'TF'.
 APPEND ls_rsaabap TO lt_rsaabap.
 ENDLOOP.
 IF NOT lt_rsaabap IS INITIAL.

 "------- Transformations (rules)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype codeid a~tranid fieldnm
 INTO TABLE lt_lookup_temp
 FROM rstran AS a
 INNER JOIN rstranroutmap AS b ON a~tranid = b~tranid
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 expert = '' AND
 b~codeid = lt_rsaabap-codeid AND
 a~objvers = 'A' AND
 b~objvers = 'A' AND
 param_id = 1 AND
 paramtype = 1. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT04'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations (start routine)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype startroutine tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 startroutine = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT01'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations (end routine)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype

 Performer Suite Seite 28 von 77

 sourcesubtype endroutine tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 endroutine = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT02'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations (expert routine)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype expert tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 expert = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT03'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations (Global declaration part 1)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype glbcode tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 glbcode = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT05'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations (Global declaration part 2)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype glbcode2 tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 glbcode2 = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT06'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "-------
 SORT lt_lookup_finder BY codeid.
 LOOP AT lt_rsaabap INTO ls_rsaabap.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_finder INTO ls_lookup
 WITH KEY codeid = ls_rsaabap-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 IF ls_lookup-sourcetype = 'RSDS'.
 CONDENSE ls_lookup-sourcename.
 ENDIF.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_rsaabap TO ls_result.
 "Get description of Transformation
 CLEAR lv_txtlg.
 SELECT SINGLE txtlg INTO lv_txtlg FROM rstrant
 WHERE langu = sy-langu
 AND tranid = ls_lookup-tranid
 AND objvers = 'A'.
 IF sy-subrc <> 0.
 "If no text found derive description of the Transformation
 CONCATENATE ls_lookup-sourcetype ls_lookup-sourcename '->'

 Performer Suite Seite 29 von 77

 ls_lookup-targettype ls_lookup-targetname
 INTO lv_txtlg SEPARATED BY space.
 ENDIF.
 ls_result-txtlg = lv_txtlg.

 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.
 ENDIF.

 "Start Change ADü_20180618 - DP-1210
 "handle AMDP Scripts
 "RT20 -> HANA Script (Expert Routine)
 "RT21 -> AMDP Start Routine
 "RT22 -> AMDP End Routine
 "RT23 -> AMDP Expert Routine
 "RT24 -> AMDP InfoObject Routine

 "HANA Script
 IF lt_g_script IS NOT INITIAL.
 CLEAR lt_lookup_finder.
 "------- Transformations - HANA Script (Expert Routine)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype tranid
 INTO CORRESPONDING FIELDS OF TABLE lt_lookup_temp
 FROM rstran
 FOR ALL ENTRIES IN lt_g_script
 WHERE tranid = lt_g_script-tranid
 AND objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT20'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "-------
 SORT lt_lookup_finder BY codeid.
 LOOP AT lt_g_script INTO ls_g_script.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_finder INTO ls_lookup
 WITH KEY tranid = ls_g_script-tranid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 IF ls_lookup-sourcetype = 'RSDS'.
 CONDENSE ls_lookup-sourcename.
 ENDIF.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_g_script TO ls_result.
 ls_result-line = ls_g_script-script.
 "Get description of Transformation
 CLEAR lv_txtlg.
 SELECT SINGLE txtlg INTO lv_txtlg FROM rstrant
 WHERE langu = sy-langu
 AND tranid = ls_lookup-tranid
 AND objvers = 'A'.
 IF sy-subrc <> 0.
 "If no text found derive description of the Transformation
 CONCATENATE ls_lookup-sourcetype ls_lookup-sourcename '->'
 ls_lookup-targettype ls_lookup-targetname
 INTO lv_txtlg SEPARATED BY space.
 ENDIF.
 ls_result-txtlg = lv_txtlg.
 ls_result-codetp = 'TF'.

 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.

 ENDIF.

 "AMDP
 IF lt_g_sscript IS NOT INITIAL.
 CLEAR lt_lookup_finder.
 "------- Transformations - AMDP Start Routine
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype startroutine tranid
 INTO TABLE lt_lookup_temp FROM rstran

 Performer Suite Seite 30 von 77

 FOR ALL ENTRIES IN lt_g_sscript
 WHERE
 startroutine = lt_g_sscript-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT21'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations - AMDP End Routine
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype endroutine tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_sscript
 WHERE
 endroutine = lt_g_sscript-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT22'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations - AMDP Expert Routine
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype expert tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_sscript
 WHERE
 expert = lt_g_sscript-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT23'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "------- Transformations - AMDP InfoObject Routine
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype codeid a~tranid fieldnm
 INTO TABLE lt_lookup_temp
 FROM rstran AS a
 INNER JOIN rstranroutmap AS b ON a~tranid = b~tranid
 FOR ALL ENTRIES IN lt_g_sscript
 WHERE
 expert = '' AND
 b~codeid = lt_g_sscript-codeid AND
 a~objvers = 'A' AND
 b~objvers = 'A' AND
 param_id = 1 AND
 paramtype = 1. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT24'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.

 "-------
 SORT lt_lookup_finder BY codeid.
 LOOP AT lt_g_sscript INTO ls_g_sscript.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_finder INTO ls_lookup
 WITH KEY codeid = ls_g_sscript-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 IF ls_lookup-sourcetype = 'RSDS'.
 CONDENSE ls_lookup-sourcename.
 ENDIF.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_g_sscript TO ls_result.
 ls_result-line = ls_g_sscript-script.
 "Get description of Transformation
 CLEAR lv_txtlg.
 SELECT SINGLE txtlg INTO lv_txtlg FROM rstrant

 Performer Suite Seite 31 von 77

 WHERE langu = sy-langu
 AND tranid = ls_lookup-tranid
 AND objvers = 'A'.
 IF sy-subrc <> 0.
 "If no text found derive description of the Transformation
 CONCATENATE ls_lookup-sourcetype ls_lookup-sourcename '->'
 ls_lookup-targettype ls_lookup-targetname
 INTO lv_txtlg SEPARATED BY space.
 ENDIF.
 ls_result-txtlg = lv_txtlg.
 ls_result-codetp = 'TF'.

 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.
 ENDIF.
 "End Change ADü_20180618 - DP-1210

 "BW4/HANA
 IF lt_g_rstransteprout IS NOT INITIAL.
 CLEAR lt_lookup_finder.
 CLEAR lt_lookup_temp.
 "------- Transformations - Start Routine
 SELECT ('targetname targettype targetsubtype sourcename sourcetype sourcesubtype

startroutine tranid set_runtime')
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 startroutine = lt_g_rstransteprout-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 IF ls_lookup-set_runtime = 'O'.
 ls_lookup-routinetype = 'RT34'.
 ELSE.
 ls_lookup-routinetype = 'RT30'.
 ENDIF.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "------- Transformations - End Routine
 CLEAR lt_lookup_temp.
 SELECT ('targetname targettype targetsubtype sourcename sourcetype sourcesubtype endroutine

tranid set_runtime')
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 endroutine = lt_g_rstransteprout-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 IF ls_lookup-set_runtime = 'O'.
 ls_lookup-routinetype = 'RT35'.
 ELSE.
 ls_lookup-routinetype = 'RT31'.
 ENDIF.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "------- Transformations - Expert Routine
 CLEAR lt_lookup_temp.
 SELECT ('targetname targettype targetsubtype sourcename sourcetype sourcesubtype expert

tranid set_runtime')
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 expert = lt_g_rstransteprout-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 IF ls_lookup-set_runtime = 'O'.
 ls_lookup-routinetype = 'RT37'.
 ELSE.
 ls_lookup-routinetype = 'RT33'.
 ENDIF.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "------- Transformations - InfoObject Routine
 CLEAR lt_lookup_temp.

 Performer Suite Seite 32 von 77

 SELECT ('targetname targettype targetsubtype sourcename sourcetype sourcesubtype codeid

a~tranid a~set_runtime fieldnm')
 INTO TABLE lt_lookup_temp
 FROM rstran AS a
 INNER JOIN rstranroutmap AS b ON a~tranid = b~tranid
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 expert = '' AND
 b~codeid = lt_g_rstransteprout-codeid AND
 a~objvers = 'A' AND
 b~objvers = 'A' AND
 param_id = 1 AND
 paramtype = 1. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 IF ls_lookup-set_runtime = 'O'.
 ls_lookup-routinetype = 'RT36'.
 ELSE.
 ls_lookup-routinetype = 'RT32'.
 ENDIF.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "------- Transformations (Global declaration part 1)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype glbcode tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 glbcode = lt_g_rstransteprout-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT05'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "------- Transformations (Global declaration part 2)
 CLEAR lt_lookup_temp.
 SELECT targetname targettype targetsubtype sourcename sourcetype
 sourcesubtype glbcode2 tranid
 INTO TABLE lt_lookup_temp FROM rstran
 FOR ALL ENTRIES IN lt_g_rstransteprout
 WHERE
 glbcode2 = lt_g_rstransteprout-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_lookup_temp INTO ls_lookup.
 ls_lookup-routinetype = 'RT06'.
 APPEND ls_lookup TO lt_lookup_finder.
 ENDLOOP.
 "-------
 SORT lt_lookup_finder BY codeid.
 LOOP AT lt_g_rstransteprout INTO ls_g_rstransteprout.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_finder INTO ls_lookup
 WITH KEY codeid = ls_g_rstransteprout-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 IF ls_lookup-sourcetype = 'RSDS'.
 CONDENSE ls_lookup-sourcename.
 ENDIF.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_g_rstransteprout TO ls_result.
 ls_result-line = ls_g_rstransteprout-code.
 "Get description of Transformation
 CLEAR lv_txtlg.
 SELECT SINGLE txtlg INTO lv_txtlg FROM rstrant
 WHERE langu = sy-langu
 AND tranid = ls_lookup-tranid
 AND objvers = 'A'.
 IF sy-subrc <> 0.
 "If no text found derive description of the Transformation
 CONCATENATE ls_lookup-sourcetype ls_lookup-sourcename '->'
 ls_lookup-targettype ls_lookup-targetname
 INTO lv_txtlg SEPARATED BY space.
 ENDIF.
 ls_result-txtlg = lv_txtlg.
 ls_result-codetp = 'TF'.

 Performer Suite Seite 33 von 77

 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.
 ENDIF.

 ENDIF.

 "--
 " Scan InfoObject (Char.) Transfer-Routines
 "--
 IF i_iobjrout = 'X'.

 TYPES:
 BEGIN OF s_chabas,
 chabasnm LIKE rsdchabas-chabasnm,
 iobjrout LIKE rsdchabas-iobjrout,
 END OF s_chabas,
 t_chabas TYPE STANDARD TABLE OF s_chabas.

 DATA lt_chabas TYPE t_chabas.
 FIELD-SYMBOLS <s_chabas> TYPE s_chabas.

 CLEAR lt_rsaabap.
 LOOP AT gt_rsaabap INTO ls_rsaabap WHERE codetp = 'IC'.
 APPEND ls_rsaabap TO lt_rsaabap.
 ENDLOOP.
 IF NOT lt_rsaabap IS INITIAL.

 CLEAR: lt_lookup_temp, lt_chabas.
 SELECT chabasnm iobjrout
 INTO TABLE lt_chabas
 FROM rsdchabas
 FOR ALL ENTRIES IN lt_rsaabap
 WHERE
 iobjrout = lt_rsaabap-codeid AND
 objvers = 'A'. "#EC *

 LOOP AT lt_chabas ASSIGNING <s_chabas>.
 CLEAR ls_lookup.
 ls_lookup-iobjnm = <s_chabas>-chabasnm.
 ls_lookup-codeid = <s_chabas>-iobjrout.
 APPEND ls_lookup TO lt_lookup_temp.
 ENDLOOP.

 SORT lt_lookup_temp BY codeid.
 LOOP AT lt_rsaabap INTO ls_rsaabap.
 CLEAR ls_lookup.
 READ TABLE lt_lookup_temp INTO ls_lookup
 WITH KEY codeid = ls_rsaabap-codeid BINARY SEARCH.
 IF sy-subrc = 0.
 CLEAR ls_result.
 ls_lookup-routinetype = 'RT15'.
 MOVE-CORRESPONDING ls_lookup TO ls_result.
 MOVE-CORRESPONDING ls_rsaabap TO ls_result.
 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.

 ENDIF.
 ENDIF.

ENDFORM. "scan_rsaabap

&--
*& Form scan_dtp
&--
* text

FORM scan_dtp
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.

 DATA:
 l_t_dtp_range TYPE t_devcl_range,
 l_s_dtp_range TYPE s_devcl_range,

 Performer Suite Seite 34 von 77

 lt_obj TYPE STANDARD TABLE OF tadir-obj_name,
 ls_match_result TYPE match_result,
 l_dtpnm TYPE rsbkdtpnm,
 ls_rsbkdtpt LIKE rsbkdtpt,
 lt_rsbkdtpt LIKE TABLE OF rsbkdtpt,
 lr_cl_rsbk_dtp TYPE REF TO cl_rsbk_dtp,
 lr_cl_rsbc_filter TYPE REF TO cl_rsbc_filter,
 ls_dtprule TYPE mch_s_sourcecode,
 lt_dtprule TYPE mch_t_sourcecode,
 ls_result TYPE s_result.

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange,
 <s_obj> LIKE LINE OF lt_obj.
 "--

 SELECT obj_name INTO TABLE lt_obj FROM tadir
 WHERE
 pgmid = 'R3TR' AND
 object = 'DTPA'. "#EC *

 SELECT * INTO TABLE lt_rsbkdtpt FROM rsbkdtpt
 WHERE
 langu = sy-langu AND
 objvers = 'A'.

 SORT lt_rsbkdtpt BY dtp.

 LOOP AT lt_obj ASSIGNING <s_obj>.

 CLEAR:
 lr_cl_rsbk_dtp,
 lr_cl_rsbc_filter.

 "===== Get Filter-Routines =====
 l_dtpnm = <s_obj>.
 lr_cl_rsbk_dtp = cl_rsbk_dtp=>factory(l_dtpnm).
 TRY.
 lr_cl_rsbc_filter = lr_cl_rsbk_dtp->get_obj_ref_filter().
 CATCH cx_rs_access_error.
 CONTINUE.
 ENDTRY.

 LOOP AT lr_cl_rsbc_filter->n_t_dtprule INTO ls_dtprule.

 LOOP AT lt_string ASSIGNING <string>.
 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_dtprule-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_dtprule-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string> IN ls_dtprule-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string> IN ls_dtprule-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.
 IF ls_match_result-offset <> 0.
 CLEAR ls_result.
 ls_result-codetp = 'DTP'.
 ls_result-targetname = <s_obj>.
 ls_result-routinetype = 'RT13'.
 ls_result-iobjnm = ls_dtprule-field.
 ls_result-line_no = ls_dtprule-line_no.
 ls_result-line = ls_dtprule-line.
 "Get description

 Performer Suite Seite 35 von 77

 READ TABLE lt_rsbkdtpt INTO ls_rsbkdtpt
 WITH KEY dtp = <s_obj> BINARY SEARCH.
 IF sy-subrc = 0.
 ls_result-txtlg = ls_rsbkdtpt-txtlg.
 ENDIF.
 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.

 ENDLOOP.

 ENDLOOP.

ENDFORM. "scan_dtp

&--
*& Form scan_ip
&--
FORM scan_ip
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.
 DATA:
 l_t_devcl_range TYPE t_devcl_range,
 l_s_devcl_range TYPE s_devcl_range,
 lt_obj TYPE STANDARD TABLE OF tadir-obj_name,
 ls_rsldprule LIKE rsldprule,
 lt_rsldprule LIKE TABLE OF ls_rsldprule,
 ls_match_result TYPE match_result,
 ls_rsldpiot LIKE rsldpiot,
 lt_rsldpiot LIKE TABLE OF rsldpiot,
 ls_result TYPE s_result.

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange,
 <s_obj> LIKE LINE OF lt_obj.

 LOOP AT t_devcl_range ASSIGNING <s_range>.
 l_s_devcl_range-sign = <s_range>-sign.
 l_s_devcl_range-option = <s_range>-option.
 l_s_devcl_range-low = <s_range>-low.
 l_s_devcl_range-high = <s_range>-high.
 APPEND l_s_devcl_range TO l_t_devcl_range.
 ENDLOOP.

 "--

 SELECT obj_name INTO TABLE lt_obj FROM tadir
 WHERE
 pgmid = 'R3TR' AND
 object = 'ISIP'. "#EC *

 SELECT * INTO TABLE lt_rsldpiot FROM rsldpiot
 WHERE
 langu = sy-langu AND
 objvers = 'A'.

 SORT lt_rsldpiot BY logdpid.

 LOOP AT lt_obj ASSIGNING <s_obj>.

 CLEAR lt_rsldprule.
 SELECT
 r~logdpid
 r~objvers
 r~fieldname
 r~lnr
 r~iobjnm
 line
 INTO TABLE lt_rsldprule
 FROM rsldpsel AS s INNER JOIN rsldprule AS r
 ON s~logdpid = r~logdpid AND
 s~objvers = r~objvers AND
 s~fieldname = r~fieldname
 WHERE

 Performer Suite Seite 36 von 77

 s~logdpid = <s_obj> AND
 s~objvers = 'A'.

 LOOP AT lt_rsldprule INTO ls_rsldprule.

 LOOP AT lt_string ASSIGNING <string>.

 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_rsldprule-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_rsldprule-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string> IN ls_rsldprule-line
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string> IN ls_rsldprule-line
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.

 IF ls_match_result-offset <> 0.
 CLEAR ls_result.
 ls_result-codetp = 'IP'.
 ls_result-targetname = <s_obj>.
 ls_result-routinetype = 'RT14'.
 ls_result-txtlg = ls_rsldprule-fieldname.
 ls_result-iobjnm = ls_rsldprule-iobjnm.
 ls_result-line_no = sy-tabix.
 ls_result-line = ls_rsldprule-line.
 READ TABLE lt_rsldpiot INTO ls_rsldpiot
 WITH KEY logdpid = ls_rsldprule-logdpid BINARY SEARCH.
 IF sy-subrc = 0.
 ls_result-txtlg = ls_rsldpiot-text.
 ENDIF.
 APPEND ls_result TO gt_result.
 ENDIF.

 ENDLOOP.

 ENDLOOP.

 ENDLOOP.
ENDFORM. "scan_ip

&--
*& Form Get_REPS
&--
* text

FORM get_reps
 TABLES t_devcl_range t_reps_range t_subc_range.

 DATA:
 l_t_devcl_range TYPE t_devcl_range,
 l_s_devcl_range TYPE s_devcl_range,
 l_t_name_range TYPE t_name_range,
 l_s_name_range TYPE s_name_range,
 l_t_subc_range TYPE t_subc_range,
 l_s_subc_range TYPE s_subc_range.

 FIELD-SYMBOLS:
 <s_range> TYPE rsrange.

 "--
 " Range Importparam. in Selektionstab. mit passendem Typ übertragen
 "--
 LOOP AT t_devcl_range ASSIGNING <s_range>.

 Performer Suite Seite 37 von 77

 l_s_devcl_range-sign = <s_range>-sign.
 l_s_devcl_range-option = <s_range>-option.
 l_s_devcl_range-low = <s_range>-low.
 l_s_devcl_range-high = <s_range>-high.
 APPEND l_s_devcl_range TO l_t_devcl_range.
 ENDLOOP.

 LOOP AT t_reps_range ASSIGNING <s_range>.
 l_s_name_range-sign = <s_range>-sign.
 l_s_name_range-option = <s_range>-option.
 l_s_name_range-low = <s_range>-low.
 l_s_name_range-high = <s_range>-high.
 APPEND l_s_name_range TO l_t_name_range.
 ENDLOOP.

 LOOP AT t_subc_range ASSIGNING <s_range>.
 l_s_subc_range-sign = <s_range>-sign.
 l_s_subc_range-option = <s_range>-option.
 l_s_subc_range-low = <s_range>-low.
 l_s_subc_range-high = <s_range>-high.
 APPEND l_s_subc_range TO l_t_subc_range.
 ENDLOOP.
 "--

 SELECT object obj_name INTO TABLE gt_object FROM tadir
 AS a INNER JOIN trdir AS r ON a~obj_name = r~name
 WHERE
 pgmid = 'R3TR' AND
 object = 'PROG' AND
 obj_name IN l_t_name_range AND
 devclass IN l_t_devcl_range AND
 subc IN l_t_subc_range. "#EC *

ENDFORM. "Get_REPS

&--
*& Form get_FUNC
&--
* text

* -->I_T_DEVCL_RANGE text
* -->I_T_FUGR_RANGE text

FORM get_func
 TABLES t_devcl_range t_fugr_range.

 DATA:
 l_t_devcl_range TYPE t_devcl_range,
 l_s_devcl_range TYPE s_devcl_range,
 l_t_fugr_range TYPE t_fugr_range,
 l_s_fugr_range TYPE s_fugr_range,
 lt_obj TYPE STANDARD TABLE OF s_object,
 l_fgroup TYPE rs38l-area,
 l_program TYPE progname.

 FIELD-SYMBOLS:
 <s_range> TYPE rsrange,
 <s_obj> LIKE LINE OF lt_obj.

 "--
 " Range Importparam. in Selektionstab. mit passendem Typ übertragen
 "--
 LOOP AT t_devcl_range ASSIGNING <s_range>.
 l_s_devcl_range-sign = <s_range>-sign.
 l_s_devcl_range-option = <s_range>-option.
 l_s_devcl_range-low = <s_range>-low.
 l_s_devcl_range-high = <s_range>-high.
 APPEND l_s_devcl_range TO l_t_devcl_range.
 ENDLOOP.

 LOOP AT t_fugr_range ASSIGNING <s_range>.
 l_s_fugr_range-sign = <s_range>-sign.
 l_s_fugr_range-option = <s_range>-option.
 l_s_fugr_range-low = <s_range>-low.
 l_s_fugr_range-high = <s_range>-high.
 APPEND l_s_fugr_range TO l_t_fugr_range.

 Performer Suite Seite 38 von 77

 ENDLOOP.
 "--

 SELECT object obj_name INTO TABLE lt_obj FROM tadir
 WHERE
 pgmid = 'R3TR' AND
 object = 'FUGR' AND
 obj_name IN l_t_fugr_range AND
 devclass IN l_t_devcl_range. "#EC *

 LOOP AT lt_obj ASSIGNING <s_obj>.
 l_fgroup = <s_obj>-obj_name.
 CLEAR l_program.

 CALL FUNCTION 'FUNCTION_INCLUDE_CONCATENATE'
 CHANGING
 program = l_program
 complete_area = l_fgroup
 EXCEPTIONS
 not_enough_input = 1
 no_function_pool = 2
 delimiter_wrong_position = 3
 OTHERS = 4.

 CHECK sy-subrc IS INITIAL AND l_program IS NOT INITIAL.
 <s_obj>-object = 'FUGR'.
 <s_obj>-incl_name = l_program.
 APPEND <s_obj> TO gt_object.
 ENDLOOP.

ENDFORM. "get_FUNC

&--
*& Form get_plse
&--
* Search in Planning Functions

FORM get_plse
 TABLES lt_string t_devcl_range
 USING i_skip_comment i_case i_regex.

 DATA:
 lt_obj TYPE STANDARD TABLE OF tadir-obj_name,
 ls_rsplf_srv_p TYPE rsplf_srv_p,
 lt_rsplf_srv_p TYPE TABLE OF rsplf_srv_p,
 ls_match_result TYPE match_result,
 ls_rsplf_srvt TYPE rsplf_srvt,
 lt_rsplf_srvt TYPE TABLE OF rsplf_srvt,
 ls_result TYPE s_result.

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange,
 <s_obj> LIKE LINE OF lt_obj.
 "--

 SELECT obj_name INTO TABLE lt_obj FROM tadir
 WHERE
 pgmid = 'R3TR' AND
 object = 'PLSE'. "#EC *

 SELECT * INTO TABLE lt_rsplf_srvt FROM rsplf_srvt
 WHERE
 langu = sy-langu AND
 objvers = 'A'. "#EC *

 SORT lt_rsplf_srvt BY srvnm.

 LOOP AT lt_obj ASSIGNING <s_obj>.

 CLEAR lt_rsplf_srv_p.
 SELECT * FROM rsplf_srv_p
 INTO TABLE lt_rsplf_srv_p
 WHERE
 srvnm = <s_obj> AND
 objvers = 'A' AND

 Performer Suite Seite 39 von 77

 parnm = 'FLINE'. "#EC *

**new ADü_20170613
 DATA: lv_string TYPE string,
 lt_splitted TYPE TABLE OF string,
 ls_splitted TYPE string,
 lv_index TYPE i VALUE 0.

 CLEAR: lv_string, lv_index.

 LOOP AT lt_rsplf_srv_p INTO ls_rsplf_srv_p.
 CONCATENATE lv_string ls_rsplf_srv_p-value INTO lv_string.
 ENDLOOP.

 SPLIT lv_string AT cl_abap_char_utilities=>cr_lf INTO TABLE lt_splitted.

 READ TABLE lt_rsplf_srv_p INTO ls_rsplf_srv_p INDEX 1. "#EC *

 LOOP AT lt_splitted INTO ls_splitted.
 lv_index = lv_index + 1.

 "LOOP AT lt_rsplf_srv_p INTO ls_rsplf_srv_p.

**end new ADü_20170613

 LOOP AT lt_string ASSIGNING <string>.

 CLEAR ls_match_result.
 IF i_case = ' ' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_splitted "ls_rsplf_srv_p-value
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = ' '.
 FIND FIRST OCCURRENCE OF <string> IN ls_splitted "ls_rsplf_srv_p-value
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = ' ' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string>
 IN ls_splitted "ls_rsplf_srv_p-value
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS ls_match_result.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND FIRST OCCURRENCE OF REGEX <string>
 IN ls_splitted "ls_rsplf_srv_p-value
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS ls_match_result.
 ENDIF.

 IF ls_match_result-offset <> 0.
 CLEAR ls_result.
 ls_result-codetp = 'PF'.
 ls_result-targetname = <s_obj>.
 ls_result-routinetype = 'RT19'.
 ls_result-txtlg = ''.
 ls_result-iobjnm = ''.
 ls_result-line_no = lv_index. "ls_rsplf_srv_p-indx.
 ls_result-line = ls_splitted. "ls_rsplf_srv_p-value.
 READ TABLE lt_rsplf_srvt INTO ls_rsplf_srvt
 WITH KEY srvnm = ls_rsplf_srv_p-srvnm BINARY SEARCH.
 IF sy-subrc = 0.
 ls_result-txtlg = ls_rsplf_srvt-txtlg.
 ENDIF.
 APPEND ls_result TO gt_result.
 ENDIF.

 ENDLOOP.

 ENDLOOP.

 ENDLOOP.

ENDFORM. "get_plse

 Performer Suite Seite 40 von 77

&--
*& Form get_clas
&--
* text

FORM get_clas
 TABLES t_devcl_range t_clas_range.

 DATA:
 l_t_devcl_range TYPE t_devcl_range,
 l_s_devcl_range TYPE s_devcl_range,
 l_t_clas_range TYPE t_clas_range,
 l_s_clas_range TYPE s_clas_range,
 lt_obj TYPE STANDARD TABLE OF s_object,
 l_clskey TYPE seoclskey,
 l_obj TYPE tadir-obj_name,
 lt_includes TYPE seop_methods_w_include.

 FIELD-SYMBOLS:
 <s_range> TYPE rsrange,
 <s_obj> LIKE LINE OF lt_obj,
 <s_include> LIKE LINE OF lt_includes.

 "--
 " Range Importparam. in Selektionstab. mit passendem Typ übertragen
 "--
 LOOP AT t_devcl_range ASSIGNING <s_range>.
 l_s_devcl_range-sign = <s_range>-sign.
 l_s_devcl_range-option = <s_range>-option.
 l_s_devcl_range-low = <s_range>-low.
 l_s_devcl_range-high = <s_range>-high.
 APPEND l_s_devcl_range TO l_t_devcl_range.
 ENDLOOP.

 LOOP AT t_clas_range ASSIGNING <s_range>.
 l_s_clas_range-sign = <s_range>-sign.
 l_s_clas_range-option = <s_range>-option.
 l_s_clas_range-low = <s_range>-low.
 l_s_clas_range-high = <s_range>-high.
 APPEND l_s_clas_range TO l_t_clas_range.
 ENDLOOP.
 "--

 SELECT object obj_name INTO TABLE lt_obj FROM tadir
 WHERE
 pgmid = 'R3TR' AND
 object = 'CLAS' AND
 obj_name IN l_t_clas_range AND
 devclass IN l_t_devcl_range. "#EC *

 LOOP AT lt_obj ASSIGNING <s_obj>.
 l_clskey = <s_obj>-obj_name.
* ts 28.10.2014 - Start comment
* CALL FUNCTION 'SEO_CLASS_GET_METHOD_INCLUDES'
* EXPORTING
* clskey = l_clskey
* IMPORTING
* includes = lt_includes
* EXCEPTIONS
* _internal_class_not_existing = 1
* OTHERS = 2.
*
* LOOP AT lt_includes ASSIGNING <s_include>.
* <s_obj>-object = 'METH'.
* <s_obj>-incl_name = <s_include>-incname.
* <s_obj>-obj_name = l_clskey.
* <s_obj>-meth_name = <s_include>-cpdkey+30.
* APPEND <s_obj> TO gt_object.
* ENDLOOP.
* ts 28.10.2014 - End comment

* ts 28.10.2014 - Start insert
 CLASS cl_oo_include_naming DEFINITION LOAD.
 DATA lo_clif_incl_naming TYPE REF TO if_oo_clif_incl_naming.
 DATA lo_class_incl_naming TYPE REF TO if_oo_class_incl_naming.
 DATA l_t_method_w_include TYPE seop_methods_w_include.

 Performer Suite Seite 41 von 77

 FIELD-SYMBOLS: <s_method_w_include> TYPE seop_method_w_include.

 CALL METHOD cl_oo_include_naming=>get_instance_by_cifkey
 EXPORTING
 cifkey = l_clskey
 RECEIVING
 cifref = lo_clif_incl_naming
 EXCEPTIONS
 no_objecttype = 1
 internal_error = 2
 OTHERS = 3.

 IF sy-subrc = 0.
 lo_class_incl_naming ?= lo_clif_incl_naming.
 l_t_method_w_include =
 lo_class_incl_naming->get_all_method_includes().
 LOOP AT l_t_method_w_include ASSIGNING <s_method_w_include>.
 <s_obj>-object = 'METH'.
 <s_obj>-incl_name = <s_method_w_include>-incname.
 <s_obj>-obj_name = l_clskey.
 <s_obj>-meth_name = <s_method_w_include>-cpdkey+30.
 APPEND <s_obj> TO gt_object.
 ENDLOOP.
 "ADü - Start insert 20170621
 "Public Section
 <s_obj>-object = 'METH'.
 <s_obj>-incl_name = lo_class_incl_naming->public_section.
 <s_obj>-obj_name = l_clskey.
 <s_obj>-meth_name = 'PUBLIC SECTION'.
 APPEND <s_obj> TO gt_object.
 "Private Section
 <s_obj>-object = 'METH'.
 <s_obj>-incl_name = lo_class_incl_naming->private_section.
 <s_obj>-obj_name = l_clskey.
 <s_obj>-meth_name = 'PRIVATE SECTION'.
 APPEND <s_obj> TO gt_object.
 "Protected Section
 <s_obj>-object = 'METH'.
 <s_obj>-incl_name = lo_class_incl_naming->protected_section.
 <s_obj>-obj_name = l_clskey.
 <s_obj>-meth_name = 'PROTECTED SECTION'.
 APPEND <s_obj> TO gt_object.
 "Local Implementations
 <s_obj>-object = 'METH'.
 <s_obj>-incl_name = lo_class_incl_naming->locals_imp.
 <s_obj>-obj_name = l_clskey.
 <s_obj>-meth_name = 'LOCAL IMPLEMENTATIONS'.
 APPEND <s_obj> TO gt_object.
 "ADü - End insert 20170621
 ENDIF.
* ts 28.10.2014 - End insert

 ENDLOOP.

ENDFORM. "get_clas

&--
*& Form scan_include_code
&--
* text

FORM scan_include_code
 TABLES lt_string
 USING i_skip_comment i_case i_regex.

 DATA:
 lt_object TYPE STANDARD TABLE OF s_object,
 ls_object TYPE s_object, "TS, 20140509
 lt_include TYPE STANDARD TABLE OF tadir-obj_name,
 lv_program TYPE sy-repid,
 lt_abap TYPE abaptxt255_tab,
 lt_match_results TYPE match_result_tab,
 ls_match_result LIKE LINE OF lt_match_results,
 ls_result TYPE s_result,
 lv_func TYPE rs38l-name,
 lv_func_incl TYPE rs38l-name.

 Performer Suite Seite 42 von 77

 FIELD-SYMBOLS:
 <string> TYPE s_string,
 <s_range> TYPE rsrange,
 <obj> TYPE s_object,
 <include> TYPE tadir-obj_name,
 <abap> LIKE LINE OF lt_abap.

*--
 "Get includes
 CLEAR lt_object.
 "for reports and classes we already have the includes
 LOOP AT gt_object ASSIGNING <obj> WHERE object = 'FUGR'.
 CLEAR lt_include.
 lv_program = <obj>-incl_name.

 CALL FUNCTION 'RS_GET_ALL_INCLUDES'
 EXPORTING
 program = lv_program
 TABLES
 includetab = lt_include
 EXCEPTIONS
 not_existent = 1
 no_program = 2
 OTHERS = 3.

 CHECK sy-subrc IS INITIAL.

 LOOP AT lt_include ASSIGNING <include>.
 ls_object-object = 'FUNC'.
 ls_object-incl_name = <include>.
 APPEND ls_object TO gt_object.
 ENDLOOP.

 ENDLOOP.

 SORT lt_object.
 DELETE ADJACENT DUPLICATES FROM lt_object.
 APPEND LINES OF lt_object TO gt_object.

 "Source scan
 LOOP AT gt_object ASSIGNING <obj>.

 IF <obj>-object = 'PROG'.
 <obj>-incl_name = <obj>-obj_name.
 ENDIF.
 READ REPORT <obj>-incl_name INTO lt_abap.
 IF sy-subrc IS NOT INITIAL.
 CONTINUE.
 ENDIF.

 LOOP AT lt_string ASSIGNING <string>.

 CLEAR lt_match_results.
 IF i_case = '' AND i_regex = ''.
 FIND ALL OCCURRENCES OF <string> IN TABLE lt_abap
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS lt_match_results.
 ELSEIF i_case = 'X' AND i_regex = ''.
 FIND ALL OCCURRENCES OF <string> IN TABLE lt_abap
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS lt_match_results.
 ELSEIF i_case = '' AND i_regex = 'X'.
 FIND ALL OCCURRENCES OF REGEX <string> IN TABLE lt_abap
 IN CHARACTER MODE
 IGNORING CASE
 RESULTS lt_match_results.
 ELSEIF i_case = 'X' AND i_regex = 'X'.
 FIND ALL OCCURRENCES OF REGEX <string> IN TABLE lt_abap
 IN CHARACTER MODE
 RESPECTING CASE
 RESULTS lt_match_results.
 ENDIF.

 LOOP AT lt_match_results INTO ls_match_result.

 Performer Suite Seite 43 von 77

 READ TABLE lt_abap
 INDEX ls_match_result-line ASSIGNING <abap>.
 IF sy-subrc = 0.
 CLEAR ls_result.
 ls_result-codetp = <obj>-object(2).
 "if FUNC: Get name of FM
 IF <obj>-object = 'FUNC' OR <obj>-object = 'FUGR'.
 CLEAR lv_func.

 CALL FUNCTION 'FUNCTION_INCLUDE_INFO'
 "IMPORTING
 "FUNCTAB =
 "NAMESPACE =
 "PNAME =
 CHANGING
 funcname = lv_func
 "GROUP =
 include = <obj>-incl_name
 EXCEPTIONS
 function_not_exists = 1
 include_not_exists = 2
 group_not_exists = 3
 no_selections = 4
 no_function_include = 5
 OTHERS = 6.
 IF sy-subrc = 0.
 <obj>-obj_name = lv_func.
 ENDIF.

 ENDIF.

 IF <obj>-object = 'METH'.
 ls_result-txtlg = <obj>-meth_name.
 ENDIF.
 ls_result-targetname = <obj>-obj_name.
 ls_result-sourcename = <obj>-incl_name.
 ls_result-line_no = ls_match_result-line.
 ls_result-line = <abap>.

 CASE ls_result-codetp.
 WHEN 'PR'.
 ls_result-routinetype = 'RT16'.
 WHEN 'ME'.
 ls_result-routinetype = 'RT17'.
 WHEN 'FU'.
 ls_result-routinetype = 'RT18'.
 ENDCASE.
 APPEND ls_result TO gt_result.
 ENDIF.
 ENDLOOP.

 ENDLOOP.

 ENDLOOP.

ENDFORM. "scan_include_code

6.6 Includes

7 Function Module Z_RFC_ENTITY_SYNC - RFC-Synchronisation of Entities

7.1 General Information

System BI2

Function Module Z_RFC_ENTITY_SYNC, RFC-Synchronisation of Entities

Function Pool Z_DP

Remote Yes

Last changed by NMEYER

Last change (timestamp) 16/01/2018

Timestamp of documentation 11/08/2020 16:29:45

 Performer Suite Seite 44 von 77

7.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

TIMESTMP TYPE RSTIMESTMP X X

SYNC_WORKBENCH TYPE SONV-FLAG 'X' X X

SYNC_REPORTING TYPE SONV-FLAG 'X' X X

SYNC_CHAINS TYPE SONV-FLAG 'X' X X

SYNC_PROG TYPE SONV-FLAG 'X' X X

SYNC_FUNC TYPE SONV-FLAG 'X' X X

SYNC_CLAS TYPE SONV-FLAG 'X' X X

SYNC_IOBJ TYPE SONV-FLAG 'X' X X

SYNC_IOBJCAT TYPE SONV-FLAG X X

SYNC_AUTH TYPE SONV-FLAG 'X' X X

SYNC_APD TYPE SONV-FLAG 'X' X X

SYNC_BPC TYPE SONV-FLAG X X

SYNC_WDYN TYPE SONV-FLAG 'X' X X

7.3 Tables

Parameter Associated Type Opt. Short text

T_DEVCLASS LIKE TCHLP

T_LANGUAGE LIKE TCP0H

T_RSDIOBJ LIKE RSDIOBJ

T_RSDIOBJT LIKE RSDIOBJT

T_RSDIOBCIOBJ LIKE RSDIOBCIOBJ

T_RSDIOBCT LIKE RSDIOBCT

T_RSBASIDOC LIKE RSBASIDOC

T_RSDS LIKE RSDS

T_RSDST LIKE RSDST

T_RSOLTPSOURCE LIKE RSOLTPSOURCE

T_RSOLTPSOURCET LIKE RSOLTPSOURCET

T_RSTRANT LIKE RSTRANT

T_RSIS LIKE RSIS

T_RSIST LIKE RSIST

T_RSKSNEW LIKE RSKSNEW

T_RSKSNEWT LIKE RSKSNEWT

T_RSTS LIKE RSTS

T_RSDCUBET LIKE RSDCUBET

T_RSDODSOT LIKE RSDODSOT

T_RSQISET LIKE RSQISET

T_RSQISETT LIKE RSQISETT

T_RSBSPOKE LIKE RSBSPOKE

T_RSBSPOKET LIKE RSBSPOKET

T_RSBOHDEST LIKE RSBOHDEST

T_RSBOHDESTT LIKE RSBOHDESTT

T_RSPLS_ALVL LIKE RSPLS_ALVL

T_RSPLS_ALVLT LIKE RSPLS_ALVLT

T_RSPLF_SRV LIKE RSPLF_SRV

T_RSPLF_SRVT LIKE RSPLF_SRVT

T_RSPLS_SEQUENC
E

LIKE RSPLS_SEQUENCE

T_RSPLS_SEQUENC
ET

LIKE RSPLS_SEQUENCET

T_RSPCCHAINATTR LIKE RSPCCHAINATTR

 Performer Suite Seite 45 von 77

T_RSPCCHAINT LIKE RSPCCHAINT

T_V_REP_JOIN LIKE V_REP_JOIN

T_V_REP_REUSE LIKE V_COMPDIR_COMPIC

T_RSZGLOBV LIKE RSZGLOBV

T_V_ELTDIR_TXT LIKE RSZELTTXT

T_RSRWBINDEX LIKE RSRWBINDEX

T_RSRWBINDEXT LIKE RSRWBINDEXT

T_RSRWORKBOOK LIKE RSRWORKBOOK

T_RSZWBTMPHEAD LIKE RSZWBTMPHEAD

T_RSZWBTMPHEAD
TXT

LIKE RSZWBTMPHEADTXT

T_RSZWBTMPXREF LIKE RSZWBTMPXREF

T_RSZWTEMPLATE LIKE RSZWTEMPLATE

T_RSZWOBJTXT LIKE RSZWOBJTXT

T_RSZWOBJXREF LIKE RSZWOBJXREF

T_FUGR LIKE INFO_FUGRT

T_FUNC LIKE INFO_FUNCT

T_TADIR_PROG LIKE TRESN

T_TRDIRT LIKE TRDIRT

T_RSANT_PROCESS
T

LIKE RSANT_PROCESST

T_RSANT_PROCESS LIKE RSO_S_OBJECT_LIST

T_RSDIOBC LIKE RSDIOBC

T_RSISOSMAP LIKE RSISOSMAP

T_RSUPDINFO LIKE RSUPDINFO

T_RSDVUNI LIKE RSDVUNI

T_AGR_DEFINE LIKE AGR_DEFINE

T_AGR_TEXTS LIKE AGR_TEXTS

T_RSDCUBEMULTI LIKE RSDCUBEMULTI

T_RSQTOBJ LIKE RSQTOBJ

T_RSDKYF LIKE RSDKYF

T_VSEOCLASS LIKE VSEOCLASS

T_WDYN LIKE TRESN

T_WDY_COMPONEN
TT

LIKE WDY_COMPONENTT

7.4 Exceptions

Exception Short text

RELEASE_1_9

7.5 Source code Function module

FUNCTION Z_RFC_ENTITY_SYNC.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(TIMESTMP) TYPE RSTIMESTMP OPTIONAL
*" VALUE(SYNC_WORKBENCH) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_REPORTING) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_CHAINS) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_PROG) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_FUNC) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_CLAS) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_IOBJ) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_IOBJCAT) TYPE SONV-FLAG OPTIONAL
*" VALUE(SYNC_AUTH) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_APD) TYPE SONV-FLAG DEFAULT 'X'
*" VALUE(SYNC_BPC) TYPE SONV-FLAG OPTIONAL
*" VALUE(SYNC_WDYN) TYPE SONV-FLAG DEFAULT 'X'
*" TABLES

 Performer Suite Seite 46 von 77

*" T_DEVCLASS STRUCTURE TCHLP
*" T_LANGUAGE STRUCTURE TCP0H
*" T_RSDIOBJ STRUCTURE RSDIOBJ
*" T_RSDIOBJT STRUCTURE RSDIOBJT
*" T_RSDIOBCIOBJ STRUCTURE RSDIOBCIOBJ
*" T_RSDIOBCT STRUCTURE RSDIOBCT
*" T_RSBASIDOC STRUCTURE RSBASIDOC
*" T_RSDS STRUCTURE RSDS
*" T_RSDST STRUCTURE RSDST
*" T_RSOLTPSOURCE STRUCTURE RSOLTPSOURCE
*" T_RSOLTPSOURCET STRUCTURE RSOLTPSOURCET
*" T_RSTRANT STRUCTURE RSTRANT
*" T_RSIS STRUCTURE RSIS
*" T_RSIST STRUCTURE RSIST
*" T_RSKSNEW STRUCTURE RSKSNEW
*" T_RSKSNEWT STRUCTURE RSKSNEWT
*" T_RSTS STRUCTURE RSTS
*" T_RSDCUBET STRUCTURE RSDCUBET
*" T_RSDODSOT STRUCTURE RSDODSOT
*" T_RSQISET STRUCTURE RSQISET
*" T_RSQISETT STRUCTURE RSQISETT
*" T_RSBSPOKE STRUCTURE RSBSPOKE
*" T_RSBSPOKET STRUCTURE RSBSPOKET
*" T_RSBOHDEST STRUCTURE RSBOHDEST
*" T_RSBOHDESTT STRUCTURE RSBOHDESTT
*" T_RSPLS_ALVL STRUCTURE RSPLS_ALVL
*" T_RSPLS_ALVLT STRUCTURE RSPLS_ALVLT
*" T_RSPLF_SRV STRUCTURE RSPLF_SRV
*" T_RSPLF_SRVT STRUCTURE RSPLF_SRVT
*" T_RSPLS_SEQUENCE STRUCTURE RSPLS_SEQUENCE
*" T_RSPLS_SEQUENCET STRUCTURE RSPLS_SEQUENCET
*" T_RSPCCHAINATTR STRUCTURE RSPCCHAINATTR
*" T_RSPCCHAINT STRUCTURE RSPCCHAINT
*" T_V_REP_JOIN STRUCTURE V_REP_JOIN
*" T_V_REP_REUSE STRUCTURE V_COMPDIR_COMPIC
*" T_RSZGLOBV STRUCTURE RSZGLOBV
*" T_V_ELTDIR_TXT STRUCTURE RSZELTTXT
*" T_RSRWBINDEX STRUCTURE RSRWBINDEX
*" T_RSRWBINDEXT STRUCTURE RSRWBINDEXT
*" T_RSRWORKBOOK STRUCTURE RSRWORKBOOK
*" T_RSZWBTMPHEAD STRUCTURE RSZWBTMPHEAD
*" T_RSZWBTMPHEADTXT STRUCTURE RSZWBTMPHEADTXT
*" T_RSZWBTMPXREF STRUCTURE RSZWBTMPXREF
*" T_RSZWTEMPLATE STRUCTURE RSZWTEMPLATE
*" T_RSZWOBJTXT STRUCTURE RSZWOBJTXT
*" T_RSZWOBJXREF STRUCTURE RSZWOBJXREF
*" T_FUGR STRUCTURE INFO_FUGRT
*" T_FUNC STRUCTURE INFO_FUNCT
*" T_TADIR_PROG STRUCTURE TRESN
*" T_TRDIRT STRUCTURE TRDIRT
*" T_RSANT_PROCESST STRUCTURE RSANT_PROCESST
*" T_RSANT_PROCESS STRUCTURE RSO_S_OBJECT_LIST
*" T_RSDIOBC STRUCTURE RSDIOBC
*" T_RSISOSMAP STRUCTURE RSISOSMAP
*" T_RSUPDINFO STRUCTURE RSUPDINFO
*" T_RSDVUNI STRUCTURE RSDVUNI
*" T_AGR_DEFINE STRUCTURE AGR_DEFINE
*" T_AGR_TEXTS STRUCTURE AGR_TEXTS
*" T_RSDCUBEMULTI STRUCTURE RSDCUBEMULTI
*" T_RSQTOBJ STRUCTURE RSQTOBJ
*" T_RSDKYF STRUCTURE RSDKYF
*" T_VSEOCLASS STRUCTURE VSEOCLASS
*" T_WDYN STRUCTURE TRESN
*" T_WDY_COMPONENTT STRUCTURE WDY_COMPONENTT
*" EXCEPTIONS
*" RELEASE_1_9
*"--

 TYPES: BEGIN OF ty_langu,
 langu TYPE langu,
 END OF ty_langu.
 DATA: lv_laiso TYPE laiso,
 ls_langu TYPE ty_langu,
 lt_langu TYPE TABLE OF ty_langu WITH KEY langu.

 TYPES: BEGIN OF ty_clas,
 sign TYPE rssign,

 Performer Suite Seite 47 von 77

 option TYPE rsoption,
 low TYPE rslow,
 high TYPE rshigh,
 END OF ty_clas.
 DATA: ls_clas TYPE ty_clas,
 lt_clas TYPE TABLE OF ty_clas.

* Structure for ABAP Reports
 TYPES: BEGIN OF ty_reports,
 progname TYPE progname,
 devclass TYPE devclass,
 udat TYPE rdir_udate,
 unam TYPE unam,
 END OF ty_reports.
 DATA: ls_tresn TYPE tresn,
 lt_reports TYPE TABLE OF ty_reports.

* Structure for Web Dynpros
 TYPES: BEGIN OF ty_wdyn,
 component TYPE wdy_component_name,
 devclass TYPE devclass,
 changedon TYPE rdir_udate,
 changedby TYPE unam,
 END OF ty_wdyn.
 DATA: lt_wdyn TYPE TABLE OF ty_wdyn.

* Data for APDs:
 DATA: ls_rsant_process TYPE rsant_process,
 lt_rsant_process TYPE STANDARD TABLE OF rsant_process,
 ls_object_list TYPE rso_s_object_list.

 DATA: timestmp_date TYPE d, timestmp_time TYPE t, tz TYPE ttzz-tzone.

 FIELD-SYMBOLS: <fs_devclass> TYPE tchlp,
 <fs_language> TYPE tcp0h,
 <fs_reports> TYPE ty_reports,
 <fs_wdyn> TYPE ty_wdyn,
 <fs_rsant_process> TYPE rsant_process.

* Fill internal table for selected languages
LOOP AT t_language ASSIGNING <fs_language>.
 lv_laiso = <fs_language>-laiso.
 TRANSLATE lv_laiso TO UPPER CASE.
 MODIFY t_language FROM lv_laiso.
ENDLOOP.

SELECT spras FROM t002 INTO TABLE lt_langu
 FOR ALL ENTRIES IN t_language
 WHERE laiso = t_language-laiso.

* Fill internal table for selected packages
 LOOP AT t_devclass ASSIGNING <fs_devclass>.
 ls_clas-sign = 'I'.
 ls_clas-option = 'CP'.
 ls_clas-low = <fs_devclass>-devclass.
 APPEND ls_clas TO lt_clas.
 ENDLOOP.

 IF timestmp IS INITIAL.
 timestmp = 0.
 ENDIF.

 tz = 'UTC'. "sy-zonlo.
 CONVERT TIME STAMP timestmp TIME ZONE tz
 INTO DATE timestmp_date TIME timestmp_time.

 IF sync_workbench = 'X' OR sync_reporting = 'X'.
* CUBE, only texts (RSDCUBE is synchr. from application)
 SELECT rsdcube~infocube t~langu t~txtsh t~txtlg FROM rsdcube
 INNER JOIN rsdcubet AS t
 ON rsdcube~infocube = t~infocube
 AND rsdcube~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdcubet
 FOR ALL ENTRIES IN lt_langu

 Performer Suite Seite 48 von 77

 WHERE
 rsdcube~objvers = 'A' AND
 rsdcube~cubetype <> 'A' AND
 rsdcube~infocube NOT LIKE '/CPMB/%' AND
 rsdcube~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* ODSO, only texts (RSDODSO is synchr. from application)
 SELECT rsdodso~odsobject t~langu t~txtsh t~txtlg FROM rsdodso
 INNER JOIN rsdodsot AS t
 ON rsdodso~odsobject = t~odsobject
 AND rsdodso~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdodsot
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsdodso~objvers = 'A' AND
 rsdodso~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* ISET
 SELECT infoset timestmp tstpnm infoarea FROM rsqiset
 INTO CORRESPONDING FIELDS OF TABLE t_rsqiset WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsqiset~infoset t~langu t~txtsh t~txtlg FROM rsqiset
 INNER JOIN rsqisett AS t
 ON rsqiset~infoset = t~infoset
 AND rsqiset~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsqisett
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsqiset~objvers = 'A' AND
 rsqiset~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* ALVL
 SELECT aggrlevel infoprov timestmp tstpnm infoarea FROM rspls_alvl
 INTO CORRESPONDING FIELDS OF TABLE t_rspls_alvl WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rspls_alvl~aggrlevel t~langu t~txtsh t~txtlg FROM rspls_alvl
 INNER JOIN rspls_alvlt AS t
 ON rspls_alvl~aggrlevel = t~aggrlevel
 AND rspls_alvl~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rspls_alvlt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rspls_alvl~objvers = 'A' AND
 rspls_alvl~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* PLSE
 SELECT srvnm infoprov timestmp tstpnm FROM rsplf_srv
 INTO CORRESPONDING FIELDS OF TABLE t_rsplf_srv WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsplf_srv~srvnm t~langu t~txtlg FROM rsplf_srv
 INNER JOIN rsplf_srvt AS t
 ON rsplf_srv~srvnm = t~srvnm
 AND rsplf_srv~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsplf_srvt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsplf_srv~objvers = 'A' AND
 rsplf_srv~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* PLSQ
 SELECT seqnm timestmp tstpnm FROM rspls_sequence
 INTO CORRESPONDING FIELDS OF TABLE t_rspls_sequence WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rspls_sequence~seqnm t~langu t~txtlg FROM rspls_sequence
 INNER JOIN rspls_sequencet AS t

 Performer Suite Seite 49 von 77

 ON rspls_sequence~seqnm = t~seqnm
 AND rspls_sequence~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rspls_sequencet
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rspls_sequence~objvers = 'A' AND
 rspls_sequence~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* SPOK (InfoSpokes)
 SELECT infospoke timestmp tstpnm ohsource FROM rsbspoke
 INTO CORRESPONDING FIELDS OF TABLE t_rsbspoke WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsbspoke~infospoke t~langu t~txtsh t~txtlg FROM rsbspoke
 INNER JOIN rsbspoket AS t
 ON rsbspoke~infospoke = t~infospoke
 AND rsbspoke~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsbspoket
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsbspoke~objvers = 'A' AND
 rsbspoke~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* DEST (Destinations)
 SELECT ohdest desttype logsys timestmp tstpnm new_ohd infoarea
 FROM rsbohdest
 INTO CORRESPONDING FIELDS OF TABLE t_rsbohdest WHERE
 objvers = 'A' AND
 new_ohd = 'X' AND
 timestmp >= timestmp.

 SELECT rsbohdest~ohdest t~langu t~txtsh t~txtlg FROM rsbohdest
 INNER JOIN rsbohdestt AS t
 ON rsbohdest~ohdest = t~ohdest
 AND rsbohdest~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsbohdestt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsbohdest~objvers = 'A' AND
 new_ohd = 'X' AND
 rsbohdest~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

 ENDIF.

 IF sync_apd = 'X'.
* ANPR (Analysis Process)
 SELECT process tstpnm timestmp appl FROM rsant_process
 INTO CORRESPONDING FIELDS OF TABLE lt_rsant_process WHERE
 objvers = 'A' AND
 timestmp >= timestmp.
 LOOP AT lt_rsant_process ASSIGNING <fs_rsant_process>.
 ls_object_list-tlogo = 'ANPR'.
 ls_object_list-objnm = <fs_rsant_process>-process.
 ls_object_list-tstpnm = <fs_rsant_process>-tstpnm.
 ls_object_list-timestmp = <fs_rsant_process>-timestmp.
 ls_object_list-txtlg = <fs_rsant_process>-appl.
 APPEND ls_object_list TO t_rsant_process.
 ENDLOOP.

 SELECT rsant_process~process t~spras t~txtsh t~txtlg
 FROM rsant_process
 INNER JOIN rsant_processt AS t
 ON rsant_process~process = t~process
 AND rsant_process~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsant_processt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsant_process~objvers = 'A' AND
 rsant_process~timestmp >= timestmp AND
 t~spras = lt_langu-langu.
 ENDIF.

*Synch InfoObject-Catalogs

 Performer Suite Seite 50 von 77

 IF sync_iobjcat = 'X'.
* Catalogs
 SELECT * FROM rsdiobc
 INTO TABLE t_rsdiobc WHERE
 timestmp >= timestmp AND
 objvers = 'A'.

* Texts for Catalogs
 SELECT rsdiobc~infoobjcat t~langu t~txtsh t~txtlg FROM rsdiobc
 INNER JOIN rsdiobct AS t
 ON rsdiobc~infoobjcat = t~infoobjcat
 AND rsdiobc~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdiobct
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsdiobc~objvers = 'A' AND
 rsdiobc~timestmp >= timestmp AND
 t~langu = lt_langu-langu.
 ENDIF.

 IF sync_iobj = 'X' OR sync_workbench = 'X'.
 "Necessary when Workbench is synched (for Char-InfoProvider)!!
* IOBJ
 SELECT iobjnm iobjtp timestmp tstpnm FROM rsdiobj
 INTO CORRESPONDING FIELDS OF TABLE t_rsdiobj WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT iobjnm langu txtsh txtlg FROM rsdiobjv
 INTO CORRESPONDING FIELDS OF TABLE t_rsdiobjt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 objvers = 'A' AND
 langu = lt_langu-langu AND
 timestmp >= timestmp.

*Characteristics are not synchr. here because in BW 7.4 the View
*RSDVCHA can't be added as table parameter (contains SSTRING)

 ENDIF.

 IF sync_iobj = 'X'.
* Details for KeyFigures
 SELECT * FROM rsdkyf AS k
 INNER JOIN rsdiobj
 ON k~kyfnm = rsdiobj~iobjnm AND
 rsdiobj~objvers = k~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdkyf
 WHERE
 rsdiobj~timestmp >= timestmp AND
 rsdiobj~objvers = 'A'.

*Time Characteristics are not synchr. here because in BW 7.4 the
*View RSDVTIM can't be added as table parameter (contains SSTRING)

* Details for Units
 SELECT * FROM rsdvuni AS u
 INNER JOIN rsdiobj
 ON u~uninm = rsdiobj~iobjnm AND
 rsdiobj~objvers = u~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdvuni
 WHERE
 rsdiobj~timestmp >= timestmp AND
 rsdiobj~objvers = 'A'.

 ENDIF.

 IF sync_reporting = 'X' OR sync_workbench = 'X'.
 "in case of workbench sync we also need to sync Queries because
 "Queries can be used in new BW releases also in Transformations!
* Queries must be read from v_rep_join because GENUNIID is needed!
 SELECT * FROM v_rep_join
 INTO TABLE t_v_rep_join WHERE

 Performer Suite Seite 51 von 77

 objvers = 'A' AND
 deftp = 'REP' AND
 (timestmp >= timestmp OR lastused >= timestmp).

* Get all texts to reusable reporting components
 SELECT t~eltuid t~langu t~txtsh t~txtlg FROM rszcompdir
 INNER JOIN rszelttxt AS t
 ON rszcompdir~compuid = t~eltuid
 AND rszcompdir~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_v_eltdir_txt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rszcompdir~objvers = 'A' AND
 rszcompdir~timestmp >= timestmp AND
 t~langu = lt_langu-langu.
 ENDIF.

 IF sync_reporting = 'X'.
* Reusable KeyFigures, Structures and Filters
* V_COMPDIR_COMPIC delivers duplicates in case of diff. languages!
* better use V_CMP_JOIN
 SELECT DISTINCT compuid infocube compid
 version deftp timestmp tstpnm
 FROM v_compdir_compic
 INTO CORRESPONDING FIELDS OF TABLE t_v_rep_reuse
 WHERE
 objvers = 'A' AND
 timestmp >= timestmp AND (
 deftp = 'SOB' OR
 deftp = 'STR' OR
 deftp = 'SEL' OR
 deftp = 'CKF').

* Variables
 SELECT * FROM rszglobv INTO TABLE t_rszglobv
 WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

* XLWB (Workbooks)
 SELECT * FROM rsrwbindex INTO TABLE t_rsrwbindex
 WHERE objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsrwbindex~workbookid t~langu t~title FROM rsrwbindex
 INNER JOIN rsrwbindext AS t
 ON rsrwbindex~workbookid = t~workbookid
 AND rsrwbindex~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsrwbindext
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsrwbindex~objvers = 'A' AND
 rsrwbindex~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* BTMP (7.x WebTemplates)
 SELECT * FROM rszwbtmphead INTO TABLE t_rszwbtmphead
 WHERE objvers = 'A' AND
 timestmp >= timestmp.

 SELECT t~objid t~langu t~txtlg FROM rszwbtmphead
 INNER JOIN rszwbtmpheadtxt AS t
 ON rszwbtmphead~objid = t~objid
 AND rszwbtmphead~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rszwbtmpheadtxt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rszwbtmphead~objvers = 'A' AND
 rszwbtmphead~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* TMPL (3.x WebTemplates)
 SELECT * FROM rszwtemplate INTO TABLE t_rszwtemplate
 WHERE objvers = 'A' AND
 timestmp >= timestmp.

 SELECT t~objid t~langu t~txtlg FROM rszwtemplate

 Performer Suite Seite 52 von 77

 INNER JOIN rszwobjtxt AS t
 ON rszwtemplate~tmplid = t~objid
 AND rszwtemplate~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rszwobjtxt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rszwtemplate~objvers = 'A' AND
 rszwtemplate~timestmp >= timestmp AND
 t~langu = lt_langu-langu.
 ENDIF.

 IF sync_workbench = 'X'.
* Source Systems
 SELECT * FROM rsbasidoc
 INTO TABLE t_rsbasidoc
 WHERE timestmp >= timestmp.

* ISFS (3.x DataSources)
* SELECT * FROM rsoltpsource
* INTO CORRESPONDING FIELDS OF TABLE rsoltpsource WHERE
* objvers = 'A' AND
* timestmp >= timestmp.

 SELECT s~oltpsource s~logsys s~type s~tstpnm s~timestmp
 FROM rsoltpsource AS s
 INNER JOIN rsisosmap AS m
 ON s~oltpsource = m~oltpsource
 AND s~logsys = m~logsys
 AND s~objvers = m~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsoltpsource
 WHERE
 s~objvers = 'A' AND
 s~timestmp >= timestmp.

 SELECT rsoltpsource~oltpsource rsoltpsource~logsys t~langu
 t~txtsh t~txtlg
 FROM rsoltpsource
 INNER JOIN rsoltpsourcet AS t
 ON rsoltpsource~oltpsource = t~oltpsource
 AND rsoltpsource~logsys = t~logsys
 AND rsoltpsource~objvers = t~objvers
 INNER JOIN rsisosmap AS m "to get only DS used in 3.x Data Flows
 ON rsoltpsource~oltpsource = m~oltpsource
 AND rsoltpsource~logsys = m~logsys
 AND rsoltpsource~objvers = m~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsoltpsourcet
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsoltpsource~objvers = 'A' AND
 rsoltpsource~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* RSDS (7.x DS); Always full sync because this table is only relevant
* for getting version and date of change, the DataSources
* will be received from table RSTRAN
 SELECT datasource logsys type applnm exstructure delta
 timestmp tstpnm
 FROM rsds
 INTO CORRESPONDING FIELDS OF TABLE t_rsds WHERE
 objvers = 'A'." AND timestmp >= timestmp.

 SELECT rsds~datasource rsds~logsys t~langu t~txtsh t~txtlg
 FROM rsds
 INNER JOIN rsdst AS t
 ON rsds~datasource = t~datasource
 AND rsds~logsys = t~logsys
 AND rsds~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdst
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsds~objvers = 'A' AND
 rsds~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

 Performer Suite Seite 53 von 77

* RSIS (3.x InfoSources)
 SELECT isource comstru timestmp tstpnm FROM rsis
 INTO CORRESPONDING FIELDS OF TABLE t_rsis WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsis~isource t~langu t~txtsh t~txtlg FROM rsis
 INNER JOIN rsist AS t
 ON rsis~isource = t~isource
 AND rsis~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsist
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsis~objvers = 'A' AND
 rsis~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* TRCS (7.x InfoSources)
 SELECT isource timestmp tstpnm FROM rsksnew
 INTO CORRESPONDING FIELDS OF TABLE t_rsksnew WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

 SELECT rsksnew~isource t~langu t~txtlg FROM rsksnew
 INNER JOIN rsksnewt AS t
 ON rsksnew~isource = t~isource
 AND rsksnew~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsksnewt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rsksnew~objvers = 'A' AND
 rsksnew~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* 3.x Transfer Structures
 SELECT * FROM rsts
 INTO TABLE t_rsts WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

* TRFN (7.x Transformations), only texts
 SELECT rstran~tranid t~langu t~txtsh t~txtlg FROM rstran
 INNER JOIN rstrant AS t
 ON rstran~tranid = t~tranid
 AND rstran~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rstrant
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rstran~objvers = 'A' AND
 rstran~timestmp >= timestmp AND
 t~langu = lt_langu-langu.

* RSISOSMAP (Mapping between InfoSources and OLTP Sources, 3.x)
 "the timestamp in RSISOSMAP is not updated in SAP, so join on RSTS
 SELECT * FROM rsisosmap
 INNER JOIN rsts
 ON rsisosmap~transtru = rsts~transtru
 AND rsisosmap~objvers = rsts~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsisosmap
 WHERE
 rsisosmap~objvers = 'A' AND
 rsts~timestmp >= timestmp.

* RSUPDINFO (Mapping Infos for Update Rules, 3.x)
 SELECT * FROM rsupdinfo
 INTO TABLE t_rsupdinfo WHERE
 objvers = 'A' AND
 timestmp >= timestmp.

* RSDCUBEMULTI
 SELECT m~infocube m~posit m~partcube FROM rsdcube AS c
 INNER JOIN rsdcubemulti AS m

 Performer Suite Seite 54 von 77

 ON m~infocube = c~infocube
 AND m~objvers = c~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsdcubemulti WHERE
 c~objvers = 'A' AND
 m~infocube NOT LIKE '/CPMB/%' AND
 c~timestmp >= timestmp.

* RSQTOBJ (Table Objects in the InfoSet)
 SELECT t~infoset t~talias t~tname t~ttype FROM rsqiset AS i
 INNER JOIN rsqtobj AS t
 ON i~infoset = t~infoset
 AND i~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rsqtobj WHERE
 i~objvers = 'A' AND
 i~timestmp >= timestmp AND
 t~ttype <> ''.

 ENDIF.

 IF sync_chains = 'X'.
* RSPC (Process Chains) -> no real date of change available,
* because running a chain activates it automatically!
 IF sync_bpc <> 'X'."BPC Module is not lic., exclude BPC chains
 SELECT chain_id timestmp tstpnm applnm FROM rspcchainattr
 INTO CORRESPONDING FIELDS OF TABLE t_rspcchainattr WHERE
 objvers = 'A' AND
 chain_id NOT LIKE '/CPMB/%' AND
 timestmp >= timestmp.

 SELECT rspcchainattr~chain_id t~langu t~txtlg FROM rspcchainattr
 INNER JOIN rspcchaint AS t
 ON rspcchainattr~chain_id = t~chain_id
 AND rspcchainattr~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rspcchaint
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rspcchainattr~objvers = 'A' AND
 rspcchainattr~chain_id NOT LIKE '/CPMB/%' AND
 rspcchainattr~timestmp >= timestmp AND
 t~langu = lt_langu-langu.
 ELSE.
 SELECT chain_id timestmp tstpnm applnm FROM rspcchainattr
 INTO CORRESPONDING FIELDS OF TABLE t_rspcchainattr
 WHERE objvers = 'A' AND timestmp >= timestmp.

 SELECT rspcchainattr~chain_id t~langu t~txtlg FROM rspcchainattr
 INNER JOIN rspcchaint AS t
 ON rspcchainattr~chain_id = t~chain_id
 AND rspcchainattr~objvers = t~objvers
 INTO CORRESPONDING FIELDS OF TABLE t_rspcchaint
 FOR ALL ENTRIES IN lt_langu
 WHERE
 rspcchainattr~objvers = 'A' AND
 rspcchainattr~timestmp >= timestmp AND
 t~langu = lt_langu-langu.
 ENDIF.

 ENDIF.

 IF sync_func = 'X'.
* FUNC (Function Modules by dev-classes) View: INFO_FUNCT
* No language selection because elements might be missing if no
* description maintained in the chosen language
 SELECT funcname spras area pname include fmode devclass stext
 FROM info_funct
 INTO CORRESPONDING FIELDS OF TABLE t_func
 WHERE
 info_funct~devclass IN lt_clas.

* select name sdate stime from trdir
* into corresponding fields of table func where
* SUBC = 'I' and
* SDATE = timestmp_date and
* stime >= timestmp_time.

 Performer Suite Seite 55 von 77

* FUGR (Function Groups + texts by dev-classes)
* No language selection because elements might be missing if no
* description maintained in the chosen language
 SELECT * FROM info_fugrt
 INTO TABLE t_fugr WHERE
 devclass IN lt_clas.

 ENDIF.

 IF sync_prog = 'X'.
* PROG (ABAP Reports)
 SELECT tadir~obj_name tadir~devclass
 trdir~udat trdir~unam
 FROM tadir
 INNER JOIN trdir ON
 tadir~obj_name = trdir~name
 INTO TABLE lt_reports
 WHERE
 tadir~pgmid = 'R3TR' AND
 tadir~object = 'PROG' AND
 tadir~devclass IN lt_clas AND
 trdir~udat >= timestmp_date.
 LOOP AT lt_reports ASSIGNING <fs_reports>.
 ls_tresn-obj_namelo = <fs_reports>-progname.
 ls_tresn-devclass = <fs_reports>-devclass.
 ls_tresn-moddate = <fs_reports>-udat.
 ls_tresn-author = <fs_reports>-unam.
 APPEND ls_tresn TO t_tadir_prog.
 ENDLOOP.

* PROG (Texts for ABAP Reports)
 SELECT trdirt~name trdirt~sprsl trdirt~text FROM trdirt
 INNER JOIN tadir ON
 trdirt~name = tadir~obj_name
 INNER JOIN trdir ON
 trdirt~name = trdir~name
 INTO TABLE t_trdirt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 sprsl = lt_langu-langu AND
 tadir~pgmid = 'R3TR' AND
 tadir~object = 'PROG' AND
 tadir~devclass IN lt_clas AND
 trdir~udat >= timestmp_date.
 ENDIF.

 IF sync_wdyn = 'X'.
* WDYN (Web Dynpros)
 SELECT tadir~obj_name tadir~devclass
 wdy_component~changedon wdy_component~changedby
 FROM tadir
 INNER JOIN wdy_component ON
 tadir~obj_name = wdy_component~component_name
 INTO TABLE lt_wdyn
 WHERE
 tadir~pgmid = 'R3TR' AND
 tadir~object = 'WDYN' AND
 tadir~delflag <> 'X' AND
 tadir~devclass IN lt_clas AND
 wdy_component~version = 'A' AND
 wdy_component~type = '0' AND
 wdy_component~changedon >= timestmp_date.
 LOOP AT lt_wdyn ASSIGNING <fs_wdyn>.
 ls_tresn-obj_namelo = <fs_wdyn>-component.
 ls_tresn-devclass = <fs_wdyn>-devclass.
 ls_tresn-moddate = <fs_wdyn>-changedon.
 ls_tresn-author = <fs_wdyn>-changedby.
 APPEND ls_tresn TO t_wdyn.
 ENDLOOP.

* WDYN (Texts for Web Dynpros)
 SELECT wdy_componentt~component_name wdy_componentt~langu
 wdy_componentt~description
 FROM wdy_componentt
 INNER JOIN tadir ON
 wdy_componentt~component_name = tadir~obj_name
 INNER JOIN wdy_component ON

 Performer Suite Seite 56 von 77

 wdy_componentt~component_name = wdy_component~component_name
 INTO TABLE t_wdy_componentt
 FOR ALL ENTRIES IN lt_langu
 WHERE
 langu = lt_langu-langu AND
 wdy_component~version = 'A' AND
 wdy_component~type = '0' AND
 tadir~pgmid = 'R3TR' AND
 tadir~object = 'WDYN' AND
 tadir~delflag <> 'X' AND
 tadir~devclass IN lt_clas AND
 wdy_component~changedon >= timestmp_date.
 ENDIF.

 IF sync_clas = 'X'.
* CLAS (ABAP Classes), sync texts and tech. info together
 SELECT vseoclass~clsname vseoclass~langu vseoclass~descript
 vseoclass~changedby vseoclass~changedon tadir~devclass
 FROM vseoclass INNER JOIN tadir
 ON vseoclass~clsname = tadir~obj_name
 INTO CORRESPONDING FIELDS OF TABLE t_vseoclass
 WHERE
 tadir~pgmid = 'R3TR' AND
 tadir~object = 'CLAS' AND
 tadir~devclass IN lt_clas AND
 vseoclass~version = '1' AND
 vseoclass~changedon >= timestmp_date.
 ENDIF.

 IF sync_auth = 'X'.
 SELECT mandt agr_name parent_agr change_usr change_tim change_dat
 FROM agr_define
 INTO CORRESPONDING FIELDS OF TABLE t_agr_define
 WHERE agr_name NOT LIKE 'SAP%' AND
 change_dat >= timestmp_date.

 SELECT agr_texts~mandt agr_texts~agr_name agr_texts~spras
 agr_texts~line agr_texts~text
 FROM agr_texts
 INNER JOIN agr_define ON
 agr_define~mandt = agr_texts~mandt AND
 agr_define~agr_name = agr_texts~agr_name
 INTO TABLE t_agr_texts
 FOR ALL ENTRIES IN lt_langu
 WHERE
 spras = lt_langu-langu AND
 agr_texts~agr_name NOT LIKE 'SAP%' AND
 line = '00000' AND
 agr_define~change_dat >= timestmp_date.
 ENDIF.

ENDFUNCTION.

8 Function Module Z_RFC_FUNCTION_DELETE - Delete Function Module (for Updating FMs)

8.1 General Information

System BI2

Function Module Z_RFC_FUNCTION_DELETE, Delete Function Module (for Updating FMs)

Function Pool Z_DP

Remote Yes

Last changed by ADUERRSTEIN

Last change (timestamp) 09/03/2018

Timestamp of documentation 11/08/2020 16:29:51

8.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

 Performer Suite Seite 57 von 77

FUNCNAME TYPE FUNCNAME X Funktionsname

8.3 Exceptions

Exception Short text

ERROR_MESSAGE

RELEASE_1_0

8.4 Source code Function module

FUNCTION z_rfc_function_delete.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(FUNCNAME) TYPE FUNCNAME
*" EXCEPTIONS
*" ERROR_MESSAGE
*" RELEASE_1_0
*"--
 CALL FUNCTION 'FUNCTION_DELETE'
 EXPORTING
 funcname = funcname
 EXCEPTIONS
 error_message = 1
 OTHERS = 2.
 IF sy-subrc = 1.
 RAISE ERROR_MESSAGE.
 ENDIF.
ENDFUNCTION.

9 Function Module Z_RFC_GET_DTP_DETAILS - Read DTP filter via RFC

9.1 General Information

System BI2

Function Module Z_RFC_GET_DTP_DETAILS, Read DTP filter via RFC

Function Pool Z_DP

Remote Yes

Last changed by TSCHMIDT

Last change (timestamp) 08/12/2015

Timestamp of documentation 11/08/2020 16:29:54

9.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_DTP TYPE RSBKDTPNM X DTP ID

9.3 Export Parameter

Parameter Associated Type Pass Short text

E_MAXSIZE TYPE RSBKMAXSIZE X DTP-Extraktion: Paketgröße

9.4 Tables

Parameter Associated Type Opt. Short text

DATA_SEL LIKE RSSELECT Selections in DTP

DATA_RULE LIKE MCH_S_SOURCECOD
E

 SourceCode of DTP-Routines (RSLDPRULE)

DATA_VAR LIKE MCH_VAR_SELECT Variables in DTP-Selections

DATA_GROUP LIKE RSBK_S_FIELDS_KEY
FL

 Semantic Groupfields

 Performer Suite Seite 58 von 77

9.5 Exceptions

Exception Short text

RELEASE_1_2

9.6 Source code Function module

FUNCTION z_rfc_get_dtp_details.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(I_DTP) TYPE RSBKDTPNM
*" EXPORTING
*" VALUE(E_MAXSIZE) TYPE RSBKMAXSIZE
*" TABLES
*" DATA_SEL STRUCTURE RSSELECT
*" DATA_RULE STRUCTURE MCH_S_SOURCECODE
*" DATA_VAR STRUCTURE MCH_VAR_SELECT
*" DATA_GROUP STRUCTURE RSBK_S_FIELDS_KEYFL
*" EXCEPTIONS
*" RELEASE_1_2
*"--

 DATA l_r_rsbk_dtp TYPE REF TO cl_rsbk_dtp.
 DATA l_r_rsbc_filter TYPE REF TO cl_rsbc_filter.
 DATA l_r_rsbc_error_handler_tpl
 TYPE REF TO cl_rsbc_error_handler_tpl.

 DATA: l_t_groupfields TYPE rsbk_tx_fields_keyfl,
 l_th_groupfields TYPE HASHED TABLE OF rsbk_sx_fields_keyfl
 WITH UNIQUE KEY segid.
 DATA ls_group TYPE rsbk_s_fields_keyfl.
 DATA ls_seltab TYPE rsbk_s_select.
 DATA ls_ruletab TYPE mch_s_sourcecode.
 DATA ls_vartab TYPE mch_var_select.
 DATA ls_groupfields TYPE rsbk_sx_fields_keyfl.
 DATA lv_sel TYPE rsselect.
 DATA lv_rule TYPE mch_s_sourcecode.
 DATA lv_var TYPE mch_var_select.
 DATA lv_group TYPE rsbk_s_fields_keyfl.
 DATA lv_maxsize TYPE rsbkmaxsize.

* ==== Get Filter details ====
 TRY.
 l_r_rsbk_dtp = cl_rsbk_dtp=>factory(i_dtp).
 l_r_rsbc_filter =
 l_r_rsbk_dtp->if_rsbk_dtp_display~get_obj_ref_filter().
 CATCH cx_rs_access_error.
 ENDTRY.

* ==== Get Semantic Groups details ====
 CALL METHOD l_r_rsbk_dtp->if_rsbk_dtp_display~get_groupfields
 IMPORTING
 e_t_groupfields = l_t_groupfields.
 INSERT LINES OF l_t_groupfields INTO TABLE l_th_groupfields.

* Fill result table for selections:
 LOOP AT l_r_rsbc_filter->n_t_seltab INTO ls_seltab.

 MOVE ls_seltab-field TO lv_sel-fieldnm.
 MOVE ls_seltab-sign TO lv_sel-sign.
 MOVE ls_seltab-option TO lv_sel-option.
 MOVE ls_seltab-low TO lv_sel-low.
 MOVE ls_seltab-high TO lv_sel-high.
 APPEND lv_sel TO data_sel.

 ENDLOOP.

* Fill result table for ABAP-Routines in selections
 LOOP AT l_r_rsbc_filter->n_t_dtprule INTO ls_ruletab.

 MOVE-CORRESPONDING ls_ruletab TO lv_rule.
 APPEND lv_rule TO data_rule.

 ENDLOOP.

 Performer Suite Seite 59 von 77

* Fill result table for Variables in selections
 LOOP AT l_r_rsbc_filter->n_t_varseltab INTO ls_vartab.

 MOVE-CORRESPONDING ls_vartab TO lv_var.
 APPEND lv_var TO data_var.

 ENDLOOP.

* Fill result table for Semantic Groups
 LOOP AT l_th_groupfields INTO ls_groupfields.
 LOOP AT ls_groupfields-t_fields INTO ls_group.

 MOVE ls_group-fieldname TO lv_group-fieldname.
 MOVE ls_group-txtlg TO lv_group-txtlg.
 APPEND lv_group TO data_group.

 ENDLOOP.
 ENDLOOP.

* Get Max. Package Size
 CALL METHOD l_r_rsbk_dtp->get_maxsize
 RECEIVING
 r_maxsize = lv_maxsize.

e_maxsize = lv_maxsize.

ENDFUNCTION.

10 Function Module Z_RFC_GET_STRING - Read STRING fields

10.1 General Information

System BI2

Function Module Z_RFC_GET_STRING, Read STRING fields

Function Pool Z_DP

Remote Yes

Last changed by ADUERRSTEIN

Last change (timestamp) 15/03/2018

Timestamp of documentation 11/08/2020 16:29:57

10.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_TABLE TYPE DD02L-TABNAME X

I_FIELD TYPE FELD_NAME X X

I_RAWSTRING TYPE SONV-FLAG X X

I_SCAN_STRING TYPE CHAR80 X X

I_SCAN_FIELD TYPE FELD_NAME X X

I_ROWCOUNT TYPE SOID-ACCNT 0 X X

I_DECRYPTION TYPE SONV-FLAG 'X' X X

10.3 Export Parameter

Parameter Associated Type Pass Short text

E_STRING TYPE STRING X

E_STRINGTAB TYPE STRINGTAB X

E_RC TYPE INT4 X

E_MSG TYPE STRING X

10.4 Tables

Parameter Associated Type Opt. Short text

T_FIELDS LIKE RFC_DB_FLD

 Performer Suite Seite 60 von 77

T_OPTIONS LIKE RTXTLDAT

10.5 Exceptions

Exception Short text

RELEASE_1_7

NOT_AUTHORIZED

TABLE_NOT_AVAILABLE

10.6 Source code Function module

FUNCTION Z_RFC_GET_STRING.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(I_TABLE) TYPE DD02L-TABNAME
*" VALUE(I_FIELD) TYPE FELD_NAME OPTIONAL
*" VALUE(I_RAWSTRING) TYPE SONV-FLAG OPTIONAL
*" VALUE(I_SCAN_STRING) TYPE CHAR80 OPTIONAL
*" VALUE(I_SCAN_FIELD) TYPE FELD_NAME OPTIONAL
*" VALUE(I_ROWCOUNT) TYPE SOID-ACCNT DEFAULT 0
*" VALUE(I_DECRYPTION) TYPE SONV-FLAG DEFAULT 'X'
*" EXPORTING
*" VALUE(E_STRING) TYPE STRING
*" VALUE(E_STRINGTAB) TYPE STRINGTAB
*" VALUE(E_RC) TYPE INT4
*" VALUE(E_MSG) TYPE STRING
*" TABLES
*" T_FIELDS STRUCTURE RFC_DB_FLD
*" T_OPTIONS STRUCTURE RTXTLDAT
*" EXCEPTIONS
*" RELEASE_1_7
*" NOT_AUTHORIZED
*" TABLE_NOT_AVAILABLE
*"--
 "Check Auth.
 CALL FUNCTION 'VIEW_AUTHORITY_CHECK'
 EXPORTING
 view_action = 'S'
 view_name = i_table
 EXCEPTIONS
 no_authority = 2
 no_clientindependent_authority = 2
 no_linedependent_authority = 2
 OTHERS = 1.

 IF sy-subrc = 2.
 RAISE not_authorized.
 ELSEIF sy-subrc = 1.
 RAISE table_not_available.
 ENDIF.

 DATA:
 lr_error TYPE REF TO cx_root,
 lr_dataref TYPE REF TO data,
 lv_rawstring TYPE rswr_data_xstring,
 lv_zip TYPE c LENGTH 1.

* Variables
 DATA:
 lv_string TYPE string,
 lv_decrypt TYPE string,
 lv_temp TYPE string,
 ls_dfies TYPE dfies,
 lt_dfields TYPE ddfields,
 lt_alldfields TYPE ddfields,
 lt_stringtab TYPE stringtab, "temp. result table
 lv_skip TYPE c LENGTH 1. "Flag for skipping dataset insert
 FIELD-SYMBOLS:
 <lt_tab> TYPE ANY TABLE,
 <ls_line> TYPE any,
 <lv_any> TYPE any.

 IF i_field IS INITIAL.
*catch any exception and pass message along to caller

 Performer Suite Seite 61 von 77

 TRY.

*Get meta data for table
 CALL FUNCTION 'DDIF_NAMETAB_GET'
 EXPORTING
 tabname = i_table
 TABLES
 dfies_tab = lt_alldfields
 EXCEPTIONS
 OTHERS = 2.

 IF sy-subrc <> 0.
 e_rc = 4.
 e_msg = 'TABLE NOT FOUND, PLEASE TRY AGAIN.'.
 RETURN.
 ENDIF.

 IF t_fields[] IS INITIAL.
*No restrictions provided; use all fields
 lt_dfields = lt_alldfields.
 ELSE.
*Verify that all fieldnames specified exist in table
 LOOP AT t_fields ASSIGNING <lv_any>.
 READ TABLE lt_alldfields INTO ls_dfies
 WITH KEY fieldname = <lv_any>.
 IF sy-subrc <> 0.
*Specified field not found in table
 e_rc = 4.
 CONCATENATE 'FIELD' <lv_any> 'NOT FOUND IN TABLE' i_table
 INTO e_msg SEPARATED BY space.
 RETURN.
 ENDIF.
*Fieldname found; insert line into working dfies table
 INSERT ls_dfies INTO TABLE lt_dfields.
 ENDLOOP.
 ENDIF.

 CREATE DATA lr_dataref TYPE STANDARD TABLE OF (i_table).
 ASSIGN lr_dataref->* TO <lt_tab>.

 SELECT * FROM (i_table) INTO TABLE <lt_tab>
 WHERE (t_options).

 LOOP AT <lt_tab> ASSIGNING <ls_line>.

 FREE lt_stringtab.

 LOOP AT lt_dfields INTO ls_dfies.
 CLEAR: lv_string, lv_decrypt.
 ASSIGN COMPONENT ls_dfies-position
 OF STRUCTURE <ls_line> TO <lv_any>.
 lv_temp = <lv_any>. "force the type conversion

 "Zipped?
 IF ls_dfies-fieldname = 'COMPRESSION'.
 lv_zip = lv_temp.
 ENDIF.

 "special treatment for RAWSTRING fields
 IF ls_dfies-datatype = 'RSTR' AND i_decryption = 'X'.
 lv_rawstring = lv_temp.
 PERFORM decrypt_rawstring
 USING lv_zip lv_rawstring CHANGING lv_decrypt.
 e_string = lv_decrypt.
 lv_temp = lv_decrypt.
 ENDIF.

 lv_string = lv_temp.
 INSERT lv_string INTO TABLE lt_stringtab.
 "In case a string scan is done check if found
 IF i_scan_string IS NOT INITIAL.
 IF i_scan_field = ls_dfies-fieldname.
 IF lv_string CP i_scan_string.
 CLEAR lv_skip.
 ELSE."string not found
 lv_skip = 'X'.
 ENDIF.
 ENDIF.

 Performer Suite Seite 62 von 77

 ENDIF.
 ENDLOOP.

 "In case scan had no hit -> no insert in result table
 IF lv_skip IS INITIAL.
 APPEND LINES OF lt_stringtab TO e_stringtab.
 ENDIF.

 "Exit if a rowcount restriction was set
 IF i_rowcount > 0 AND sy-tabix GE i_rowcount.
 EXIT.
 ENDIF.

 ENDLOOP.

 CATCH cx_root INTO lr_error.
 e_rc = 4.
 e_msg = lr_error->get_text().
 ENDTRY.

 ELSE."read single line and field
 IF i_rawstring = 'X' AND i_decryption = 'X'.
 SELECT SINGLE (i_field) FROM (i_table)
 INTO lv_rawstring WHERE (t_options).
 CLEAR lv_zip.
 PERFORM decrypt_rawstring
 USING lv_zip lv_rawstring CHANGING lv_decrypt.
 e_string = lv_decrypt.
 "BEGIN NEW
 ELSEIF i_rawstring = 'X' AND i_decryption = ''.
 SELECT SINGLE (i_field) FROM (i_table)
 INTO lv_rawstring WHERE (t_options).
 e_string = lv_rawstring.
 "END NEW
 ELSE.
 SELECT SINGLE (i_field) FROM (i_table)
 INTO e_string WHERE (t_options).
 ENDIF.
 ENDIF.

ENDFUNCTION.

&--
*& Form decrypt_rawstring
&--
* text

FORM decrypt_rawstring USING lv_zip lv_rawstring CHANGING lv_decrypt.

 "Transform rawstring to text
 DATA: lv_converter TYPE REF TO cl_abap_conv_in_ce.
 DATA: lv_xstring TYPE xstring.

* unzip if compressed
 IF NOT lv_zip IS INITIAL.
 TRY.
 cl_abap_gzip=>decompress_binary(
 EXPORTING
 gzip_in = lv_rawstring
 IMPORTING
 raw_out = lv_xstring).
 CATCH: cx_parameter_invalid_range cx_sy_buffer_overflow.
 ENDTRY.
 ELSE.
 lv_xstring = lv_rawstring.
 ENDIF.

* read
 lv_converter = cl_abap_conv_in_ce=>create(
 input = lv_xstring
 encoding = 'UTF-8'
 replacement = '?'
 ignore_cerr = abap_true).

 TRY.
 CALL METHOD lv_converter->read(IMPORTING data = lv_decrypt).
 CATCH cx_sy_conversion_codepage.

 Performer Suite Seite 63 von 77

*-- Should ignore errors in code conversions
 CATCH cx_sy_codepage_converter_init.
*-- Should ignore errors in code conversions
 CATCH cx_parameter_invalid_type.
 CATCH cx_parameter_invalid_range.

 ENDTRY.

ENDFORM. "decrypt_rawstring

11 Function Module Z_RFC_HCPR_CREATE - Creation of HCPRs

11.1 General Information

System BI2

Function Module Z_RFC_HCPR_CREATE, Creation of HCPRs

Function Pool Z_DP

Remote Yes

Last changed by NMEYER

Last change (timestamp) 11/02/2019

Timestamp of documentation 11/08/2020 16:30:02

11.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_HCPRNM TYPE RSOHCPRNM '' X

I_DESCRIPTION TYPE SSTRING '' X X

I_INFOAREA TYPE RSINFOAREA '' X

11.3 Export Parameter

Parameter Associated Type Pass Short text

E_SUCCESS TYPE RS_BOOL X

11.4 Tables

Parameter Associated Type Opt. Short text

T_PARTPROVIDER LIKE RSD_S_PROV

11.5 Exceptions

Exception Short text

RELEASE_1_0

11.6 Source code Function module

FUNCTION Z_RFC_HCPR_CREATE.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(I_HCPRNM) TYPE RSOHCPRNM DEFAULT ''
*" VALUE(I_DESCRIPTION) TYPE SSTRING DEFAULT ''
*" VALUE(I_INFOAREA) TYPE RSINFOAREA DEFAULT ''
*" EXPORTING
*" VALUE(E_SUCCESS) TYPE RS_BOOL
*" TABLES
*" T_PARTPROVIDER STRUCTURE RSD_S_PROV OPTIONAL
*" EXCEPTIONS
*" RELEASE_1_0
*"--

 DATA: lt_partprovider TYPE TABLE OF rsinfoprov,
 ls_partprovider TYPE rsinfoprov,
 ls_temp TYPE RSD_S_PROV.

 LOOP AT t_partprovider INTO ls_temp.

 Performer Suite Seite 64 von 77

 ls_partprovider = ls_temp-infoprov.
 APPEND ls_partprovider TO lt_partprovider.
 ENDLOOP.

 CALL METHOD cl_rso_hcpr_metadata_api=>create_union
 EXPORTING
 i_hcprnm = i_hcprnm
 i_description = i_description
 i_infoarea = i_infoarea
 i_t_part_provider = lt_partprovider
 IMPORTING
 "e_r_msg = E_R_MSG
 e_success = E_SUCCESS.

ENDFUNCTION.

12 Function Module Z_RFC_READ_REPORT - Read ABAP-Reports via RFC

12.1 General Information

System BI2

Function Module Z_RFC_READ_REPORT, Read ABAP-Reports via RFC

Function Pool Z_DP

Remote Yes

Last changed by TSCHMIDT

Last change (timestamp) 24/08/2015

Timestamp of documentation 11/08/2020 16:30:05

12.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

PROGRAM LIKE SY-REPID X Report Name

12.3 Export Parameter

Parameter Associated Type Pass Short text

SYSTEM LIKE SY-SYSID X Name of the SAP System

TRDIR LIKE TRDIR X Generated Table for View TRDIR

12.4 Tables

Parameter Associated Type Opt. Short text

QTAB LIKE BAPITGB Structure to transfer texts for BAPIs that read docu.

12.5 Exceptions

Exception Short text

RELEASE_1_0

12.6 Source code Function module

FUNCTION Z_RFC_READ_REPORT.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(PROGRAM) LIKE SY-REPID
*" EXPORTING
*" VALUE(SYSTEM) LIKE SY-SYSID
*" VALUE(TRDIR) LIKE TRDIR STRUCTURE TRDIR
*" TABLES
*" QTAB STRUCTURE BAPITGB
*" EXCEPTIONS
*" RELEASE_1_0
*"--

 Performer Suite Seite 65 von 77

REFRESH QTAB.
READ REPORT PROGRAM INTO QTAB.
SELECT SINGLE * FROM TRDIR WHERE NAME = PROGRAM.
SYSTEM = SY-SYSID.

ENDFUNCTION.

13 Function Module Z_RFC_TRANSLATION - Translation Steward

13.1 General Information

System BI2

Function Module Z_RFC_TRANSLATION, Translation Steward

Function Pool Z_DP

Remote Yes

Last changed by MHARING

Last change (timestamp) 23/06/2020

Timestamp of documentation 11/08/2020 16:30:08

13.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_DELIMITER LIKE SONV-FLAG '¦' X

13.3 Tables

Parameter Associated Type Opt. Short text

T_VALUES LIKE TAB512

13.4 Exceptions

Exception Short text

RELEASE_1_2

13.5 Source code Function module

FUNCTION Z_RFC_TRANSLATION.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(I_DELIMITER) LIKE SONV-FLAG DEFAULT '¦'
*" TABLES
*" T_VALUES STRUCTURE TAB512
*" EXCEPTIONS
*" RELEASE_1_2
*"--

 FIELD-SYMBOLS: <fs_values> TYPE tab512,
 <fieldname> TYPE string,
 <target_struc> TYPE ANY,
 <fieldvalue> TYPE ANY.

 DATA:
 ls_tab TYPE tab512,
 lt_fieldnames TYPE STANDARD TABLE OF string,
 lt_values TYPE STANDARD TABLE OF string,
 lr_target_struc TYPE REF TO data,
 lv_tabname TYPE tabname,
 lv_value TYPE string,
 lv_fieldname TYPE string.

 "get fields from first dataset
 READ TABLE t_values[] INTO ls_tab INDEX 1.
 IF sy-subrc <> 0.
 "empty table passed - not valid
 RETURN.

 Performer Suite Seite 66 von 77

 ENDIF.

 LOOP AT t_values[] ASSIGNING <fs_values>.

 CLEAR: lv_value, lv_tabname.
 FREE: lt_fieldnames, lt_values.
 SPLIT <fs_values> AT i_delimiter INTO TABLE lt_fieldnames.

 "Get table
 LOOP AT lt_fieldnames[] ASSIGNING <fieldname>.

 IF <fieldname>(5) EQ 'TABLE'.

 SPLIT <fieldname> AT '===' INTO TABLE lt_values.
 READ TABLE lt_values INTO lv_value INDEX 2.
 IF sy-subrc = 0.
 lv_tabname = lv_value.
 EXIT.
 ENDIF.

 ENDIF.
 ENDLOOP.

 "create table structure dynamically
 FREE lr_target_struc.
 CREATE DATA lr_target_struc TYPE (lv_tabname).
 ASSIGN lr_target_struc->* TO <target_struc>.

 "Write fields
 LOOP AT lt_fieldnames[] ASSIGNING <fieldname>.

 CLEAR: lv_value.
 FREE: lt_values.

 IF <fieldname>(5) EQ 'TABLE'.
 CONTINUE.
 ENDIF.

 SPLIT <fieldname> AT '===' INTO TABLE lt_values.
 READ TABLE lt_values INTO lv_fieldname INDEX 1.
 IF sy-subrc <> 0.
 CONTINUE.
 ENDIF.
 READ TABLE lt_values INTO lv_value INDEX 2.
 IF sy-subrc <> 0.
 CONTINUE.
 ENDIF.

 ASSIGN COMPONENT lv_fieldname OF STRUCTURE <target_struc>
 TO <fieldvalue>.
 IF sy-subrc <> 0.
 WRITE:/ 'FIELD ', <fieldname>, 'NOT FOUND'.
 CONTINUE.
 ENDIF.

 <fieldvalue> = lv_value.

 ENDLOOP.

 MODIFY (lv_tabname) FROM <target_struc>.

 ENDLOOP.

 CALL FUNCTION 'DB_COMMIT'.

ENDFUNCTION.

14 Function Module Z_RFC_USAGE_ANALYSIS - Where used analysis for BI Docu Performer

14.1 General Information

System BI2

 Performer Suite Seite 67 von 77

Function Module Z_RFC_USAGE_ANALYSIS, Where used analysis for BI Docu Performer

Function Pool Z_DP

Remote Yes

Last changed by NMEYER

Last change (timestamp) 12/10/2015

Timestamp of documentation 11/08/2020 16:30:12

14.2 Import Parameter

Parameter Associated Type Default Opt. Pass Short text

I_VERSION TYPE RSOBJVERS 'A' X Object version

I_IOBJNM TYPE RSIOBJNM X X InfoObject

I_ATTRINM TYPE RSATTRINM X X Attribute (Display)

I_VALUE TYPE RSCHAVL X X Value for Characteristic

I_COMPID TYPE RSZCOMPID X X Name (ID) of a Reporting Component

I_UID TYPE SYSUUID_25 X X UUID in compressed form

I_EXTENDED TYPE SONV-FLAG X X Extended check (incl. non-reusables)

I_LEVEL_MAX TYPE INT4 99 X X Max Level

14.3 Tables

Parameter Associated Type Opt. Short text

T_CHAVL LIKE RSA_S_CHAVL

T_DATA LIKE V_COMPDIR_COMPIC

T_DATA2 LIKE TAB512

T_DATA_RANGE LIKE TAB512

14.4 Exceptions

Exception Short text

RELEASE_1_9

14.5 Source code Function module

FUNCTION Z_RFC_USAGE_ANALYSIS.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(I_VERSION) TYPE RSOBJVERS DEFAULT 'A'
*" VALUE(I_IOBJNM) TYPE RSIOBJNM OPTIONAL
*" VALUE(I_ATTRINM) TYPE RSATTRINM OPTIONAL
*" VALUE(I_VALUE) TYPE RSCHAVL OPTIONAL
*" VALUE(I_COMPID) TYPE RSZCOMPID OPTIONAL
*" VALUE(I_UID) TYPE SYSUUID_25 OPTIONAL
*" VALUE(I_EXTENDED) TYPE SONV-FLAG OPTIONAL
*" VALUE(I_LEVEL_MAX) TYPE INT4 DEFAULT 99
*" TABLES
*" T_CHAVL STRUCTURE RSA_S_CHAVL
*" T_DATA STRUCTURE V_COMPDIR_COMPIC
*" T_DATA2 STRUCTURE TAB512
*" T_DATA_RANGE STRUCTURE TAB512
*" EXCEPTIONS
*" RELEASE_1_9
*"--

* A] Elemente in Query-Selektionen -> RSZRANGE
* B] Berechnete Kennzahlen -> RSZCALC
*--

 TYPES:
 BEGIN OF ty_uid_deftp,
 compuid TYPE sysuuid_25,
 deftp TYPE rszdeftp,
 END OF ty_uid_deftp.

 DATA:

 Performer Suite Seite 68 von 77

 l_subrc TYPE rs_bool,
 l_iobjnm TYPE rsiobjnm,
 l_uid TYPE sysuuid_25,
 l_iobjtp TYPE rsiobjtp,
 l_s_uid_deftp TYPE ty_uid_deftp,
 l_t_data TYPE ty_t_data_scan,
 l_t_data_range TYPE ty_t_data_range,
 l_s_data TYPE v_compdir_compic,"Struktur für Export Parameter
 l_s_data2 TYPE char512, "Struktur für Export Parameter
 l_s_data_range TYPE char512. "Struktur für Export Parameter

 FIELD-SYMBOLS:
 <s_data> TYPE ty_s_data_scan,
 <s_data_range> TYPE ty_s_data_range,
 <fs_chavl> TYPE rsa_s_chavl.

 LOOP AT t_chavl ASSIGNING <fs_chavl>.
 ls_chavl-sign = 'I'.
 ls_chavl-option = 'EQ'.
 ls_chavl-low = <fs_chavl>-chavl.
 APPEND ls_chavl TO gt_chavl.
 ENDLOOP.

 "Globalen Parameter setzen
 p_level_max = i_level_max.

 "Wiederverwendbare Elemente puffern
 SELECT * FROM rszcompdir INTO TABLE g_t_rszcompdir
 WHERE objvers = 'A'.

 IF i_iobjnm IS NOT INITIAL.
 "--
 " Where-used analysis for InfoObjects
 "--

 "Check if a display attribute is entered:
 IF i_attrinm IS NOT INITIAL.
 PERFORM scan_attr_dis USING i_iobjnm i_attrinm i_version
 CHANGING l_t_data.
 ELSE.
 SELECT SINGLE iobjtp FROM rsdiobj INTO l_iobjtp
 WHERE iobjnm = i_iobjnm.
 IF l_iobjtp = 'KYF'.
 PERFORM scan_kyfnm USING i_iobjnm i_version CHANGING l_t_data.
 ELSEIF i_value IS NOT INITIAL OR gt_chavl IS NOT INITIAL.
 PERFORM scan_value_sel
 USING i_value i_iobjnm i_version gt_chavl
 CHANGING l_t_data l_t_data_range.
 ELSE.
* l_seltp = rsd_c_metaiobj-charact.
 PERFORM scan_char USING i_iobjnm i_version CHANGING l_t_data.
 ENDIF.
 ENDIF.

 ELSEIF i_compid IS NOT INITIAL.
 "--
 " Analysis for Reusable Query Elements
 "--

 "Get type and uid from view V_COMPDIR_ELTDIR
 SELECT SINGLE compuid deftp FROM v_compdir_eltdir
 INTO l_s_uid_deftp WHERE compid = i_compid.
 IF sy-subrc = 0.
 l_uid = l_s_uid_deftp-compuid.
 CLEAR l_iobjnm.
* CASE l_deftp.
 CASE l_s_uid_deftp-deftp.
 WHEN 'VAR'.
 "Get iobjnm from view rszglobv
 SELECT SINGLE iobjnm FROM rszglobv
 INTO l_iobjnm WHERE vnam = i_compid.
 ENDCASE.
 PERFORM scan_compid USING i_compid i_version l_iobjnm l_uid
 CHANGING l_t_data.
 ENDIF.

 ELSEIF i_uid IS NOT INITIAL.
 "--

 Performer Suite Seite 69 von 77

 " Analysis for UID
 "--
 IF i_extended IS INITIAL.
 SELECT SINGLE deftp FROM v_compdir_eltdir
 INTO CORRESPONDING FIELDS OF l_s_uid_deftp
 WHERE compuid = i_uid.
 ELSE.
 SELECT SINGLE deftp FROM rszeltdir
 INTO CORRESPONDING FIELDS OF l_s_uid_deftp
 WHERE eltuid = i_uid.
 ENDIF.
 IF sy-subrc = 0.
 l_uid = i_uid.
 PERFORM scan_compid USING i_compid i_version l_iobjnm l_uid
 CHANGING l_t_data.
 ENDIF.

 ENDIF.

 "--
 " Exportparameter füllen
 "--
 "Tabelle T_DATA + T_DATA2
 LOOP AT l_t_data ASSIGNING <s_data>.
 AT FIRST.
 "Header Zeile für Exportparameter T_DATA2 erzeugen
 l_s_data2 = 'COMPUID;LEVEL;DEFT;COMPID;COMPUID_PARENT'.
 APPEND l_s_data2 TO t_data2[].
 ENDAT.

 "Parameter T_DATA
 MOVE-CORRESPONDING <s_data> TO l_s_data.
 APPEND l_s_data TO t_data[].

 "Parameter T_DATA2
 CLEAR l_s_data2.
 CONCATENATE
 <s_data>-compuid
 <s_data>-level
 <s_data>-deftp
 <s_data>-compid
 <s_data>-compuid_parent
 INTO l_s_data2 SEPARATED BY ';'.
 APPEND l_s_data2 TO t_data2[].
 ENDLOOP.

 "Doppelte Einträge löschen
 SORT t_data[] BY compuid.
 DELETE ADJACENT DUPLICATES FROM t_data[].

 "Tabelle T_DATA_RANGE
 LOOP AT l_t_data_range ASSIGNING <s_data_range>.
 AT FIRST.
 "Header Zeile für Exportparameter T_DATA_RANGE erzeugen
 l_s_data_range =
 'COMPUID;IOBJNM;SIGN;OPT;LOW;LOWFLAG;HIGH;HIGHFLAG;HIENM'.
 APPEND l_s_data_range TO t_data_range[].
 ENDAT.

 READ TABLE l_t_data ASSIGNING <s_data>
 WITH KEY compuid_parent = <s_data_range>-compuid.
 IF sy-subrc = 0.
 <s_data_range>-compuid = <s_data>-compuid.
 ENDIF.

 CLEAR l_s_data_range.
 CONCATENATE
 <s_data_range>-compuid
 <s_data_range>-iobjnm
 <s_data_range>-sign
 <s_data_range>-opt
 <s_data_range>-low
 <s_data_range>-lowflag
 <s_data_range>-high
 <s_data_range>-highflag
 <s_data_range>-hienm
 INTO l_s_data_range SEPARATED BY ';'.
 APPEND l_s_data_range TO t_data_range[].

 Performer Suite Seite 70 von 77

 ENDLOOP.

ENDFUNCTION.

&--
*& Form scan_attr_dis
&--
FORM scan_attr_dis
 USING
 i_iobjnm
 i_attrinm
 i_version
 CHANGING
 c_t_data.

 DATA:
 l_t_eltuid TYPE ty_t_eltuid,
 l_eltuid TYPE sysuuid_25,
 l_s_data TYPE ty_s_data_scan.

 FIELD-SYMBOLS:
 <s_data> TYPE rsz_x_eltdir,
 <s_eltuid> TYPE ty_s_eltuid.

 FREE l_t_eltuid.

 SELECT DISTINCT eltuid FROM rszeltattr INTO TABLE l_t_eltuid
 WHERE objvers = i_version
 AND iobjnm = i_iobjnm
 AND attrinm = i_attrinm.

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

ENDFORM. "scan_attr_dis

&--
*& Form scan_kyfnm
&--
FORM scan_kyfnm
 USING
 i_iobjnm
 i_version
 CHANGING
 c_t_data.

 DATA:
 l_t_eltuid TYPE ty_t_eltuid,
 l_eltuid TYPE sysuuid_25,
 l_s_data TYPE ty_s_data_scan.

 FIELD-SYMBOLS:
 <s_data> TYPE rsz_x_eltdir,
 <s_eltuid> TYPE ty_s_eltuid.

 "--
 " A] Kennzahl in Tabelle RSZRANGE suchen...
 " (Eingeschränkte Kennzahl oder direkt in Query)
 "--
 FREE l_t_eltuid.

 SELECT DISTINCT eltuid FROM rszrange INTO TABLE l_t_eltuid

 Performer Suite Seite 71 von 77

 WHERE objvers = i_version
 AND iobjnm = rsd_c_metaiobj-keyfigure
 AND seltp = rzd1_c_seltp-keyfig
 AND low = i_iobjnm.

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

 "--
 " B] Kennzahl in Tabelle RSZCALC suchen...
 " (Formel und berechnete Kennzahl)
 "--
 FREE l_t_eltuid.
 SELECT DISTINCT eltuid FROM rszcalc INTO TABLE l_t_eltuid
 WHERE (objvers = i_version)
 AND (oper1 = i_iobjnm OR oper2 = i_iobjnm).

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

ENDFORM. "scan_kyfnm

&---
*& Form scan_value_sel
&---
* Search for characteristics with special selection
--
FORM scan_value_sel
 USING
 i_value
 i_iobjnm
 i_version
 lt_chavl LIKE gt_chavl
 CHANGING
 c_t_data
 c_t_data_range TYPE ty_t_data_range.

 DATA:
 l_value TYPE rschavl,
 l_eltuid TYPE sysuuid_25,
 l_s_data TYPE ty_s_data_scan,
 l_t_data_range TYPE ty_t_data_range.

 FIELD-SYMBOLS:
 <s_data_range> TYPE ty_s_data_range.

 FREE l_t_data_range.

 IF i_value CS '*' OR i_value CS '%'.

 Performer Suite Seite 72 von 77

 l_value = i_value.
 REPLACE ALL OCCURRENCES OF '*' IN l_value WITH '%'.
 SELECT DISTINCT
 eltuid
 iobjnm
 sign
 opt
 low
 lowflag
 high
 highflag
 hienm
 FROM rszrange INTO CORRESPONDING FIELDS OF TABLE l_t_data_range
 WHERE objvers = i_version
 AND iobjnm LIKE i_iobjnm "1_8; support Nav-Attributes
 AND ((opt = 'EQ' AND low LIKE l_value AND lowflag = 1)
 OR (opt = 'BT' AND low <= l_value AND lowflag = 1
 AND high >= l_value AND highflag = 1)).
 ELSEIF i_value IS NOT INITIAL.
 SELECT DISTINCT
 eltuid
 iobjnm
 sign
 opt
 low
 lowflag
 high
 highflag
 hienm
 FROM rszrange INTO CORRESPONDING FIELDS OF TABLE l_t_data_range
 WHERE objvers = i_version
 AND iobjnm LIKE i_iobjnm"1_8; support Nav-Attributes
 AND ((opt = 'EQ' AND low = i_value)
 OR (opt = 'BT' AND low <= i_value AND lowflag = 1
 AND high >= i_value AND highflag = 1)).
 ELSEIF lt_chavl IS NOT INITIAL. "Several values are passed (in table)
 SELECT DISTINCT
 eltuid
 iobjnm
 sign
 opt
 low
 lowflag
 high
 highflag
 hienm
 FROM rszrange INTO CORRESPONDING FIELDS OF TABLE l_t_data_range
 WHERE objvers = i_version
 AND iobjnm LIKE i_iobjnm "1_8; support Nav-Attributes
 AND low IN lt_chavl.
 ENDIF.

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_data_range ASSIGNING <s_data_range>.
 l_eltuid = <s_data_range>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid = l_eltuid.
 l_s_data-compuid_parent = l_eltuid.

 <s_data_range>-compuid = l_eltuid.
 APPEND <s_data_range> TO c_t_data_range.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

ENDFORM. "scan_value_sel

&---
*& Form scan_char
&---

 Performer Suite Seite 73 von 77

*--
* A] Merkmale in Queries -> RSZELTDIR
* B] Merkmale in Queries -> RSZSELECT
* C] Merkmale in Ausnahmeaggregation -> RSZCALC
* D] Merkmale in Variablen -> RSZGLOBV
* E] Merkmale als Attribut -> RSZELTATTR
*--
FORM scan_char
 USING
 i_iobjnm
 i_version
 CHANGING
 c_t_data.

 DATA:
 l_t_eltuid TYPE ty_t_eltuid,
 l_eltuid TYPE sysuuid_25,
 l_s_rszeltxref TYPE ty_s_rszeltxref,
 l_s_rszelttxt TYPE rszelttxt,
 l_subrc TYPE rs_bool,
 l_srch_attr TYPE string,
 l_s_data TYPE ty_s_data_scan.

 FIELD-SYMBOLS:
 <s_data> TYPE ty_s_data_scan,
 <s_eltuid> TYPE ty_s_eltuid,
 <s_rszcompdir> TYPE rszcompdir.

 CONCATENATE '%__' i_iobjnm INTO l_srch_attr.

 "--
 " A] RSZELTDIR
 "--
 FREE l_t_eltuid.
 SELECT DISTINCT eltuid FROM rszeltdir
 INTO CORRESPONDING FIELDS OF TABLE l_t_eltuid
 WHERE (objvers = i_version)
 AND (defaulthint = i_iobjnm OR defaulthint LIKE l_srch_attr).

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

 "--
 " B] RSZSELECT
 "--
 FREE l_t_eltuid.
 SELECT DISTINCT eltuid FROM rszselect
 INTO CORRESPONDING FIELDS OF TABLE l_t_eltuid
 WHERE objvers = i_version
 AND ((iobjnm = i_iobjnm OR coniobjnm = i_iobjnm)
 OR (iobjnm LIKE l_srch_attr OR coniobjnm LIKE l_srch_attr)).

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version

 Performer Suite Seite 74 von 77

 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

 "--
 " C] RSZCALC
 "--
 FREE l_t_eltuid.
 SELECT DISTINCT eltuid FROM rszcalc INTO TABLE l_t_eltuid
 WHERE objvers = i_version
 AND (aggrcha = i_iobjnm
 OR aggrcha LIKE l_srch_attr).

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

 "--
 " D] RSZGLOBV
 "--
 FREE l_t_eltuid.
 SELECT DISTINCT varuniid FROM rszglobv INTO TABLE l_t_eltuid
 WHERE objvers = i_version
 AND (iobjnm = i_iobjnm
 OR iobjnm LIKE l_srch_attr).

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

 "--
 " E] RSZELTATTR
 "--
 "In case of 7.x Queries: Attributes are yet detected by selection
 "on table RSZELTDIR, but in case of 3.x Queries they have to be
 "detected by reading table RSZELTATTR
 FREE l_t_eltuid.
 SELECT DISTINCT eltuid FROM rszeltattr INTO TABLE l_t_eltuid
 WHERE objvers = i_version
 AND attrinm = i_iobjnm.

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_eltuid ASSIGNING <s_eltuid>.
 l_eltuid = <s_eltuid>-eltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm

 Performer Suite Seite 75 von 77

 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.
 ENDLOOP.

ENDFORM. "scan_char

&--
*& Form scan_compid
&--
FORM scan_compid
 USING
 i_compid
 i_version
 i_iobjnm
 i_uid
 CHANGING
 c_t_data.

 DATA:
 l_eltuid TYPE sysuuid_25,
 l_s_rszeltxref TYPE ty_s_rszeltxref,
 l_t_rszeltxref TYPE TABLE OF ty_s_rszeltxref,
 l_s_data TYPE ty_s_data_scan.

 SELECT DISTINCT seltuid teltuid laytp FROM rszeltxref
 INTO TABLE l_t_rszeltxref
 WHERE objvers = i_version
 AND teltuid = i_uid.

 "Elemente anfügen und an den Elementen hochhangeln
 LOOP AT l_t_rszeltxref INTO l_s_rszeltxref.
 l_eltuid = l_s_rszeltxref-seltuid.

 CLEAR l_s_data.
 l_s_data-compuid_parent = l_eltuid.

 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_eltuid
 i_version
 CHANGING
 c_t_data
 l_s_data.

 ENDLOOP.

ENDFORM. "scan_compid

&--
*& Form SCAN_QUERY_ELEM_PARENT
&--
FORM scan_query_elem_parent
 USING
 i_iobjnm
 i_teltuid
 i_version
 CHANGING
 c_t_data TYPE ty_t_data_scan
 c_s_data_parent TYPE ty_s_data_scan.

 DATA:
 l_s_rszeltxref TYPE ty_s_rszeltxref,
 l_t_rszeltxref TYPE ty_t_rszeltxref,
 l_level TYPE c LENGTH 4,
 l_compuid TYPE sysuuid_25.

 "Handelt es sich um ein wiederverw. Query Element? => hinzufügen
 PERFORM add_record
 USING
 i_iobjnm
 i_teltuid
 i_version

 Performer Suite Seite 76 von 77

 CHANGING
 c_t_data
 c_s_data_parent.

 l_level = c_s_data_parent-level.
 l_compuid = c_s_data_parent-compuid.

 "Übergeordnete Elemete ermitteln (SELTUID)
 SELECT seltuid teltuid laytp FROM rszeltxref
 INTO TABLE l_t_rszeltxref
 WHERE objvers = 'A'
 AND teltuid = i_teltuid.

 LOOP AT l_t_rszeltxref INTO l_s_rszeltxref.

 c_s_data_parent-level = l_level.
 c_s_data_parent-compuid = l_compuid.

 "Rekursion beenden?
 CHECK l_level < p_level_max.

 "Eine Stufe hoch (die oberste Ebene entspricht der Query)
 PERFORM scan_query_elem_parent
 USING
 i_iobjnm
 l_s_rszeltxref-seltuid
 i_version
 CHANGING
 c_t_data
 c_s_data_parent.

 ENDLOOP.

ENDFORM. "SCAN_QUERY_ELEM_PARENT

&--
*& Form add_record
&--
FORM add_record
 USING
 i_iobjnm TYPE rsiobjnm
 i_eltuid TYPE sysuuid_25
 i_version TYPE rsobjvers
 CHANGING
 c_t_data TYPE ty_t_data_scan
 c_s_data_parent TYPE ty_s_data_scan.

 DATA:
 l_s_data TYPE ty_s_data_scan,
 l_s_rszglobv TYPE rszglobv,
 l_level TYPE c LENGTH 4.

 FIELD-SYMBOLS:
 <s_rszcompdir> TYPE rszcompdir.

 "--
 " Wiederverwendbares Element?
 "--
 READ TABLE g_t_rszcompdir ASSIGNING <s_rszcompdir>
 WITH TABLE KEY compuid = i_eltuid.
 IF sy-subrc = 0.

 CLEAR l_s_data.
 MOVE <s_rszcompdir>-compuid TO l_s_data-compuid.
 MOVE <s_rszcompdir>-compid TO l_s_data-compid.
 MOVE <s_rszcompdir>-version TO l_s_data-version.
 MOVE <s_rszcompdir>-tstpnm TO l_s_data-tstpnm.
 MOVE <s_rszcompdir>-timestmp TO l_s_data-timestmp.

 l_level = c_s_data_parent-level + '0001'.
 MOVE l_level TO l_s_data-level.
 MOVE c_s_data_parent-compuid TO l_s_data-compuid_parent.

 "Datensatz schon vorhanden?
 READ TABLE c_t_data TRANSPORTING NO FIELDS
 WITH KEY
 compuid = <s_rszcompdir>-compuid

 Performer Suite Seite 77 von 77

 compuid_parent = l_s_data-compuid_parent.

 IF sy-subrc NE 0.

* IF l_s_data-compuid NE l_s_data-compuid_parent.

 IF l_s_data-compuid EQ l_s_data-compuid_parent.
 CLEAR l_s_data-compuid_parent.
 ENDIF.

 "Zusätzl. Infos aus RSZCOMPIC
 SELECT SINGLE infocube FROM rszcompic INTO l_s_data-infocube
 WHERE compuid = i_eltuid
 AND objvers = i_version.

 "Zusätzl. Infos lesen aus RSZELTDIR
 SELECT SINGLE deftp FROM rszeltdir INTO (l_s_data-deftp)
 WHERE eltuid = i_eltuid
 AND objvers = i_version.

 "Zusätzl. Infos aus V_CMP_JOIN
 SELECT SINGLE deftp FROM v_cmp_join INTO (l_s_data-deftp)
 WHERE compuid = i_eltuid
 AND objvers = i_version.

 "Text lesen aus RSZELTTXT
 SELECT SINGLE txtlg FROM rszelttxt INTO l_s_data-txtlg
 WHERE eltuid = l_s_data-compuid
 AND objvers = i_version
 AND langu = sy-langu.

 INSERT l_s_data INTO TABLE c_t_data.

* ENDIF.

 "Letzten Satz für Level und Vorgänger merken
 c_s_data_parent = l_s_data.

 ENDIF.

 RETURN.

 ENDIF.

* "--
* " Variable?
* "--
 SELECT SINGLE * FROM rszglobv INTO l_s_rszglobv
 WHERE varuniid = i_eltuid
 AND objvers = 'A'.

 IF sy-subrc = 0.
 l_s_data-compuid = l_s_rszglobv-varuniid.
 l_s_data-compid = l_s_rszglobv-vnam.
 INSERT l_s_data INTO TABLE c_t_data.
 ENDIF.

ENDFORM. " ADD_RECORD

